Explainable Machine Learning for Cyberattack Identification from Traffic Flows
- URL: http://arxiv.org/abs/2505.01488v1
- Date: Fri, 02 May 2025 17:34:14 GMT
- Title: Explainable Machine Learning for Cyberattack Identification from Traffic Flows
- Authors: Yujing Zhou, Marc L. Jacquet, Robel Dawit, Skyler Fabre, Dev Sarawat, Faheem Khan, Madison Newell, Yongxin Liu, Dahai Liu, Hongyun Chen, Jian Wang, Huihui Wang,
- Abstract summary: We simulate cyberattacks in a semi-realistic environment, using a traffic network to analyze disruption patterns.<n>We develop a deep learning-based anomaly detection system, demonstrating that Longest Stop Duration and Total Jam Distance are key indicators of compromised signals.<n>This work enhances AI-driven traffic security, improving both detection accuracy and trustworthiness in smart transportation systems.
- Score: 5.834276858232939
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The increasing automation of traffic management systems has made them prime targets for cyberattacks, disrupting urban mobility and public safety. Traditional network-layer defenses are often inaccessible to transportation agencies, necessitating a machine learning-based approach that relies solely on traffic flow data. In this study, we simulate cyberattacks in a semi-realistic environment, using a virtualized traffic network to analyze disruption patterns. We develop a deep learning-based anomaly detection system, demonstrating that Longest Stop Duration and Total Jam Distance are key indicators of compromised signals. To enhance interpretability, we apply Explainable AI (XAI) techniques, identifying critical decision factors and diagnosing misclassification errors. Our analysis reveals two primary challenges: transitional data inconsistencies, where mislabeled recovery-phase traffic misleads the model, and model limitations, where stealth attacks in low-traffic conditions evade detection. This work enhances AI-driven traffic security, improving both detection accuracy and trustworthiness in smart transportation systems.
Related papers
- Exploring Traffic Simulation and Cybersecurity Strategies Using Large Language Models [5.757331432762268]
This study presents a novel multi-agent framework to enhance traffic simulation and cybersecurity testing.<n>The framework automates the creation of traffic scenarios, the design of cyberattack strategies, and the development of defense mechanisms.<n>Results show a 10.2 percent increase in travel time during an attack, which is reduced by 3.3 percent with the defense strategy.
arXiv Detail & Related papers (2025-06-20T02:41:23Z) - Confidence-Regulated Generative Diffusion Models for Reliable AI Agent Migration in Vehicular Metaverses [55.70043755630583]
vehicular AI agents are endowed with environment perception, decision-making, and action execution capabilities.<n>We propose a reliable vehicular AI agent migration framework, achieving reliable dynamic migration and efficient resource scheduling.<n>We develop a Confidence-regulated Generative Diffusion Model (CGDM) to efficiently generate AI agent migration decisions.
arXiv Detail & Related papers (2025-05-19T05:04:48Z) - AI-Powered Anomaly Detection with Blockchain for Real-Time Security and Reliability in Autonomous Vehicles [1.1797787239802762]
We develop a new framework that combines the power of Artificial Intelligence (AI) for real-time anomaly detection with blockchain technology to detect and prevent any malicious activity.<n>This framework employs a decentralized platform for securely storing sensor data and anomaly alerts in a blockchain ledger for data incorruptibility and authenticity.<n>This makes the AV system more resilient to attacks from both cyberspace and hardware component failure.
arXiv Detail & Related papers (2025-05-10T12:53:28Z) - Machine Learning for Cyber-Attack Identification from Traffic Flows [5.834276858232939]
This paper presents our simulation of cyber-attacks and detection strategies on the traffic control system in Daytona Beach, FL.<n>We try to answer the research questions: are we able to identify cyber attacks by only analyzing traffic flow patterns.
arXiv Detail & Related papers (2025-05-02T17:34:19Z) - CNN+Transformer Based Anomaly Traffic Detection in UAV Networks for Emergency Rescue [12.074051347588963]
We propose a novel anomaly traffic detection architecture for UAV networks based on the software-defined networking (SDN) framework and blockchain technology.<n>An integrated algorithm combining convolutional neural networks (CNNs) and Transformer (CNN+Transformer) for anomaly traffic detection is developed, which is called CTranATD.
arXiv Detail & Related papers (2025-03-26T09:27:26Z) - CoT-VLM4Tar: Chain-of-Thought Guided Vision-Language Models for Traffic Anomaly Resolution [14.703196966156288]
CoT-VLM4Tar: (Chain of Thought Visual-Language Model for Traffic Anomaly Resolution)<n>This paper introduces a new chain-of-thought to guide the VLM in analyzing, reasoning, and generating solutions for traffic anomalies with greater reasonable and effective solution.<n>Our results demonstrate the effectiveness of VLM in the resolution of real-time traffic anomalies, providing a proof-of-concept for its integration into autonomous traffic management systems.
arXiv Detail & Related papers (2025-03-03T15:07:25Z) - Multi-Source Urban Traffic Flow Forecasting with Drone and Loop Detector Data [61.9426776237409]
Drone-captured data can create an accurate multi-sensor mobility observatory for large-scale urban networks.<n>A simple yet effective graph-based model HiMSNet is proposed to integrate multiple data modalities and learn-temporal correlations.
arXiv Detail & Related papers (2025-01-07T03:23:28Z) - NetFlowGen: Leveraging Generative Pre-training for Network Traffic Dynamics [72.95483148058378]
We propose to pre-train a general-purpose machine learning model to capture traffic dynamics with only traffic data from NetFlow records.<n>We address challenges such as unifying network feature representations, learning from large unlabeled traffic data volume, and testing on real downstream tasks in DDoS attack detection.
arXiv Detail & Related papers (2024-12-30T00:47:49Z) - Cyber-Twin: Digital Twin-boosted Autonomous Attack Detection for Vehicular Ad-Hoc Networks [8.07947129445779]
The rapid evolution of Vehicular Ad-hoc NETworks (VANETs) has ushered in a transformative era for intelligent transportation systems (ITS)
VANETs are increasingly susceptible to cyberattacks, such as jamming and distributed denial of service (DDoS) attacks.
Existing methods face difficulties in detecting dynamic attacks and integrating digital twin technology and artificial intelligence (AI) models to enhance VANET cybersecurity.
This study proposes a novel framework that combines digital twin technology with AI to enhance the security of RSUs in VANETs.
arXiv Detail & Related papers (2024-01-25T08:05:41Z) - Reinforcement Learning based Cyberattack Model for Adaptive Traffic
Signal Controller in Connected Transportation Systems [61.39400591328625]
In a connected transportation system, adaptive traffic signal controllers (ATSC) utilize real-time vehicle trajectory data received from vehicles to regulate green time.
This wirelessly connected ATSC increases cyber-attack surfaces and increases their vulnerability to various cyber-attack modes.
One such mode is a'sybil' attack in which an attacker creates fake vehicles in the network.
An RL agent is trained to learn an optimal rate of sybil vehicle injection to create congestion for an approach(s)
arXiv Detail & Related papers (2022-10-31T20:12:17Z) - Anomaly Detection in Automatic Generation Control Systems Based on
Traffic Pattern Analysis and Deep Transfer Learning [0.38073142980733]
In modern highly interconnected power grids, automatic generation control (AGC) is crucial in maintaining the stability of the power grid.
The dependence of the AGC system on the information and communications technology (ICT) system makes it vulnerable to various types of cyber-attacks.
Information flow (IF) analysis and anomaly detection became paramount for preventing cyber attackers from driving the cyber-physical power system to instability.
arXiv Detail & Related papers (2022-09-16T17:52:42Z) - Efficient Federated Learning with Spike Neural Networks for Traffic Sign
Recognition [70.306089187104]
We introduce powerful Spike Neural Networks (SNNs) into traffic sign recognition for energy-efficient and fast model training.
Numerical results indicate that the proposed federated SNN outperforms traditional federated convolutional neural networks in terms of accuracy, noise immunity, and energy efficiency as well.
arXiv Detail & Related papers (2022-05-28T03:11:48Z) - End-to-End Intersection Handling using Multi-Agent Deep Reinforcement
Learning [63.56464608571663]
Navigating through intersections is one of the main challenging tasks for an autonomous vehicle.
In this work, we focus on the implementation of a system able to navigate through intersections where only traffic signs are provided.
We propose a multi-agent system using a continuous, model-free Deep Reinforcement Learning algorithm used to train a neural network for predicting both the acceleration and the steering angle at each time step.
arXiv Detail & Related papers (2021-04-28T07:54:40Z) - Adversarial vs behavioural-based defensive AI with joint, continual and
active learning: automated evaluation of robustness to deception, poisoning
and concept drift [62.997667081978825]
Recent advancements in Artificial Intelligence (AI) have brought new capabilities to behavioural analysis (UEBA) for cyber-security.
In this paper, we present a solution to effectively mitigate this attack by improving the detection process and efficiently leveraging human expertise.
arXiv Detail & Related papers (2020-01-13T13:54:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.