論文の概要: Quantum RNNs and LSTMs Through Entangling and Disentangling Power of Unitary Transformations
- arxiv url: http://arxiv.org/abs/2505.06774v1
- Date: Sat, 10 May 2025 22:56:18 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-13 20:21:49.034317
- Title: Quantum RNNs and LSTMs Through Entangling and Disentangling Power of Unitary Transformations
- Title(参考訳): ユニタリ変換のエンタングルパワーとアンタングルパワーによる量子RNNとLSTM
- Authors: Ammar Daskin,
- Abstract要約: 本稿では、量子リカレントニューラルネットワーク(RNN)とその拡張バージョンである長寿命メモリ(LSTM)ネットワークをどのようにモデル化するかについて議論する。
特に、LSTMにおけるエンタングリングとアンタングリングのパワーを情報保持と忘れるメカニズムとして解釈する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we discuss how quantum recurrent neural networks (RNNs) and their enhanced version, long short-term memory (LSTM) networks, can be modeled using the core ideas presented in Ref.[1], where the entangling and disentangling power of unitary transformations is investigated. In particular, we interpret entangling and disentangling power as information retention and forgetting mechanisms in LSTMs. Therefore, entanglement becomes a key component of the optimization (training) process. We believe that, by leveraging prior knowledge of the entangling power of unitaries, the proposed quantum-classical framework can guide and help to design better-parameterized quantum circuits for various real-world applications.
- Abstract(参考訳): 本稿では,量子リカレントニューラルネットワーク(RNN)とその拡張バージョンである長寿命メモリ(LSTM)ネットワークについて,Refで提示されたコアアイデアを用いてモデル化する方法について論じる。
[1] 単位変換の絡み合いと解離力について検討した。
特に、LSTMにおけるエンタングリングとアンタングリングのパワーを情報保持と忘れるメカニズムとして解釈する。
したがって、絡み合いは最適化(トレーニング)プロセスの重要な構成要素となる。
我々は、ユニタリーの絡み合うパワーに関する事前の知識を活用することで、提案された量子古典的フレームワークは、様々な現実世界のアプリケーションのためのより良いパラメータ化された量子回路を設計し、設計するのに役立つと信じている。
関連論文リスト
- The Impact of Architecture and Cost Function on Dissipative Quantum Neural Networks [0.016385815610837167]
本稿では,各ビルディングブロックが任意の量子チャネルを実装可能な,散逸型量子ニューラルネットワーク(DQNN)の新しいアーキテクチャを提案する。
アイソメトリの多目的な1対1パラメトリ化を導出し,提案手法の効率的な実装を可能にした。
論文 参考訳(メタデータ) (2025-02-13T17:38:48Z) - Quantum-Train-Based Distributed Multi-Agent Reinforcement Learning [5.673361333697935]
量子トレインに基づく分散マルチエージェント強化学習(Dist-QTRL)
量子トレインに基づく分散マルチエージェント強化学習(Dist-QTRL)を紹介する。
論文 参考訳(メタデータ) (2024-12-12T00:51:41Z) - Quantum Large Language Models via Tensor Network Disentanglers [0.0]
本稿では,量子コンピューティングと量子インスパイアされた技術を統合することで,Large Language Models(LLM)の性能を向上させる手法を提案する。
我々のアプローチは、自己保持層と多層パーセプトロン層における重み行列を、2つの変分量子回路と量子インスパイアされたテンソルネットワークの組み合わせで置き換えることである。
論文 参考訳(メタデータ) (2024-10-22T20:12:04Z) - Quantum Generative Adversarial Networks: Bridging Classical and Quantum
Realms [0.6827423171182153]
GAN(Generative Adversarial Networks)領域における古典的および量子コンピューティングパラダイムの相乗的融合について検討する。
我々の目的は、量子計算要素を従来のGANアーキテクチャにシームレスに統合し、トレーニングプロセスの強化のために新しい経路を開放することである。
この研究は量子化機械学習の最前線に位置し、量子システムの計算能力を活用するための重要な一歩である。
論文 参考訳(メタデータ) (2023-12-15T16:51:36Z) - Quantum machine learning for image classification [39.58317527488534]
本研究では、量子力学の原理を有効計算に活用する2つの量子機械学習モデルを紹介する。
我々の最初のモデルは、並列量子回路を持つハイブリッド量子ニューラルネットワークであり、ノイズの多い中間スケール量子時代においても計算の実行を可能にする。
第2のモデルは、クオン進化層を持つハイブリッド量子ニューラルネットワークを導入し、畳み込みプロセスによる画像の解像度を低下させる。
論文 参考訳(メタデータ) (2023-04-18T18:23:20Z) - The Quantum Path Kernel: a Generalized Quantum Neural Tangent Kernel for
Deep Quantum Machine Learning [52.77024349608834]
古典的なディープニューラルネットワークの量子アナログを構築することは、量子コンピューティングにおける根本的な課題である。
鍵となる問題は、古典的なディープラーニングの本質的な非線形性にどのように対処するかである。
我々は、深層機械学習のこれらの側面を複製できる量子機械学習の定式化であるQuantum Path Kernelを紹介する。
論文 参考訳(メタデータ) (2022-12-22T16:06:24Z) - Synergy Between Quantum Circuits and Tensor Networks: Short-cutting the
Race to Practical Quantum Advantage [43.3054117987806]
本稿では,量子回路の初期化を最適化するために,古典計算資源を利用するスケーラブルな手法を提案する。
本手法は, PQCのトレーニング性, 性能を, 様々な問題において著しく向上させることを示す。
古典的コンピュータを用いて限られた量子資源を増強する手法を実証することにより、量子コンピューティングにおける量子と量子に着想を得たモデル間の相乗効果を実証する。
論文 参考訳(メタデータ) (2022-08-29T15:24:03Z) - The Hintons in your Neural Network: a Quantum Field Theory View of Deep
Learning [84.33745072274942]
線形および非線形の層をユニタリ量子ゲートとして表現する方法を示し、量子モデルの基本的な励起を粒子として解釈する。
ニューラルネットワークの研究のための新しい視点と技術を開くことに加えて、量子定式化は光量子コンピューティングに適している。
論文 参考訳(メタデータ) (2021-03-08T17:24:29Z) - Experimental Quantum Generative Adversarial Networks for Image
Generation [93.06926114985761]
超伝導量子プロセッサを用いた実世界の手書き桁画像の学習と生成を実験的に行う。
我々の研究は、短期量子デバイス上での高度な量子生成モデル開発のためのガイダンスを提供する。
論文 参考訳(メタデータ) (2020-10-13T06:57:17Z) - Entanglement Classification via Neural Network Quantum States [58.720142291102135]
本稿では、学習ツールと量子絡み合いの理論を組み合わせて、純状態における多部量子ビット系の絡み合い分類を行う。
我々は、ニューラルネットワーク量子状態(NNS)として知られる制限されたボルツマンマシン(RBM)アーキテクチャにおいて、人工ニューラルネットワークを用いた量子システムのパラメータ化を用いる。
論文 参考訳(メタデータ) (2019-12-31T07:40:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。