論文の概要: Quantum-Train-Based Distributed Multi-Agent Reinforcement Learning
- arxiv url: http://arxiv.org/abs/2412.08845v1
- Date: Thu, 12 Dec 2024 00:51:41 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-13 13:33:54.122108
- Title: Quantum-Train-Based Distributed Multi-Agent Reinforcement Learning
- Title(参考訳): 量子トレインに基づく分散マルチエージェント強化学習
- Authors: Kuan-Cheng Chen, Samuel Yen-Chi Chen, Chen-Yu Liu, Kin K. Leung,
- Abstract要約: 量子トレインに基づく分散マルチエージェント強化学習(Dist-QTRL)
量子トレインに基づく分散マルチエージェント強化学習(Dist-QTRL)を紹介する。
- 参考スコア(独自算出の注目度): 5.673361333697935
- License:
- Abstract: In this paper, we introduce Quantum-Train-Based Distributed Multi-Agent Reinforcement Learning (Dist-QTRL), a novel approach to addressing the scalability challenges of traditional Reinforcement Learning (RL) by integrating quantum computing principles. Quantum-Train Reinforcement Learning (QTRL) leverages parameterized quantum circuits to efficiently generate neural network parameters, achieving a \(poly(\log(N))\) reduction in the dimensionality of trainable parameters while harnessing quantum entanglement for superior data representation. The framework is designed for distributed multi-agent environments, where multiple agents, modeled as Quantum Processing Units (QPUs), operate in parallel, enabling faster convergence and enhanced scalability. Additionally, the Dist-QTRL framework can be extended to high-performance computing (HPC) environments by utilizing distributed quantum training for parameter reduction in classical neural networks, followed by inference using classical CPUs or GPUs. This hybrid quantum-HPC approach allows for further optimization in real-world applications. In this paper, we provide a mathematical formulation of the Dist-QTRL framework and explore its convergence properties, supported by empirical results demonstrating performance improvements over centric QTRL models. The results highlight the potential of quantum-enhanced RL in tackling complex, high-dimensional tasks, particularly in distributed computing settings, where our framework achieves significant speedups through parallelization without compromising model accuracy. This work paves the way for scalable, quantum-enhanced RL systems in practical applications, leveraging both quantum and classical computational resources.
- Abstract(参考訳): 本稿では,量子トレインに基づく分散マルチエージェント強化学習(Dist-QTRL)を紹介する。
量子トレイン強化学習(Quantum-Train Reinforcement Learning, QTRL)は、パラメータ化量子回路を利用して、ニューラルネットワークのパラメータを効率的に生成する。
このフレームワークは分散マルチエージェント環境向けに設計されており、複数のエージェントがQPU(Quantum Processing Units)としてモデル化され、並列に動作し、より高速な収束と拡張性を実現する。
さらに、Dist-QTRLフレームワークは、古典的ニューラルネットワークのパラメータ還元に分散量子トレーニングを利用することで、高性能コンピューティング(HPC)環境に拡張することができる。
このハイブリッド量子-HPCアプローチは、現実世界のアプリケーションでさらなる最適化を可能にする。
本稿では、Dist-QTRLフレームワークの数学的定式化と収束性の検討を行い、集中型QTRLモデルよりも優れた性能を示す実験結果によって支援する。
その結果、複雑で高次元なタスク、特に分散コンピューティング環境では、モデルの精度を損なうことなく並列化による大幅な高速化を実現する量子強化RLの可能性を強調した。
この研究は、量子計算資源と古典計算資源の両方を活用して、スケーラブルで量子強化されたRLシステムを実用化するための道を開いた。
関連論文リスト
- Leveraging Pre-Trained Neural Networks to Enhance Machine Learning with Variational Quantum Circuits [48.33631905972908]
我々は、事前学習されたニューラルネットワークを用いて変分量子回路(VQC)を強化する革新的なアプローチを導入する。
この手法は近似誤差をキュービット数から効果的に分離し、制約条件の必要性を除去する。
我々の結果はヒトゲノム解析などの応用にまで拡張され、我々のアプローチの幅広い適用性を示している。
論文 参考訳(メタデータ) (2024-11-13T12:03:39Z) - Quantum-Train with Tensor Network Mapping Model and Distributed Circuit Ansatz [0.8192907805418583]
量子トレイン(Quantum-Train、QT)は、量子古典機械学習のハイブリッドフレームワークである。
量子状態の測定を古典的なニューラルネットワークの重みにマッピングする。
従来のQTフレームワークでは、このタスクにマルチレイヤパーセプトロン(MLP)を採用しているが、スケーラビリティと解釈可能性に苦慮している。
複数の小さな量子処理ユニットノードを持つ大規模量子機械学習用に設計された分散回路アンサッツを提案する。
論文 参考訳(メタデータ) (2024-09-11T03:51:34Z) - Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
d可変RZゲートとG-dクリフォードゲートを含む量子回路を与えられた場合、学習者は純粋に古典的な推論を行い、その線形特性を効率的に予測できるだろうか?
我々は、d で線形にスケーリングするサンプルの複雑さが、小さな予測誤差を達成するのに十分であり、対応する計算の複雑さは d で指数関数的にスケールすることを証明する。
我々は,予測誤差と計算複雑性をトレードオフできるカーネルベースの学習モデルを考案し,多くの実践的な環境で指数関数からスケーリングへ移行した。
論文 参考訳(メタデータ) (2024-08-22T08:21:28Z) - Differentiable Quantum Architecture Search in Asynchronous Quantum Reinforcement Learning [3.6881738506505988]
トレーニング可能な回路パラメータと構造重み付けを可能にするために、微分可能な量子アーキテクチャ探索(DiffQAS)を提案する。
提案したDiffQAS-QRL手法は,手作業による回路アーキテクチャに匹敵する性能を実現する。
論文 参考訳(メタデータ) (2024-07-25T17:11:00Z) - Generative AI-enabled Quantum Computing Networks and Intelligent
Resource Allocation [80.78352800340032]
量子コンピューティングネットワークは、大規模な生成AI計算タスクと高度な量子アルゴリズムを実行する。
量子コンピューティングネットワークにおける効率的なリソース割り当ては、量子ビットの可変性とネットワークの複雑さのために重要な課題である。
我々は、生成学習から量子機械学習まで、最先端強化学習(RL)アルゴリズムを導入し、最適な量子リソース割り当てを行う。
論文 参考訳(メタデータ) (2024-01-13T17:16:38Z) - Decomposition of Matrix Product States into Shallow Quantum Circuits [62.5210028594015]
テンソルネットワーク(TN)アルゴリズムは、パラメタライズド量子回路(PQC)にマッピングできる
本稿では,現実的な量子回路を用いてTN状態を近似する新しいプロトコルを提案する。
その結果、量子回路の逐次的な成長と最適化を含む1つの特定のプロトコルが、他の全ての手法より優れていることが明らかとなった。
論文 参考訳(メタデータ) (2022-09-01T17:08:41Z) - Synergy Between Quantum Circuits and Tensor Networks: Short-cutting the
Race to Practical Quantum Advantage [43.3054117987806]
本稿では,量子回路の初期化を最適化するために,古典計算資源を利用するスケーラブルな手法を提案する。
本手法は, PQCのトレーニング性, 性能を, 様々な問題において著しく向上させることを示す。
古典的コンピュータを用いて限られた量子資源を増強する手法を実証することにより、量子コンピューティングにおける量子と量子に着想を得たモデル間の相乗効果を実証する。
論文 参考訳(メタデータ) (2022-08-29T15:24:03Z) - Optimizing Tensor Network Contraction Using Reinforcement Learning [86.05566365115729]
本稿では,グラフニューラルネットワーク(GNN)と組み合わせた強化学習(RL)手法を提案する。
この問題は、巨大な検索スペース、重い尾の報酬分布、そして困難なクレジット割り当てのために非常に難しい。
GNNを基本方針として利用するRLエージェントが,これらの課題にどのように対処できるかを示す。
論文 参考訳(メタデータ) (2022-04-18T21:45:13Z) - Variational Quantum Reinforcement Learning via Evolutionary Optimization [0.0]
グラデーションフリーな進化最適化を用いた深部量子RLタスクの2つのフレームワークを提案する。
本稿では,量子RLエージェントにTN-VQCアーキテクチャを組み込んだハイブリッドフレームワークを提案する。
これにより、147次元の入力でMiniGrid環境で量子RLを実行することができる。
論文 参考訳(メタデータ) (2021-09-01T16:36:04Z) - Experimental Quantum Generative Adversarial Networks for Image
Generation [93.06926114985761]
超伝導量子プロセッサを用いた実世界の手書き桁画像の学習と生成を実験的に行う。
我々の研究は、短期量子デバイス上での高度な量子生成モデル開発のためのガイダンスを提供する。
論文 参考訳(メタデータ) (2020-10-13T06:57:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。