Benign Samples Matter! Fine-tuning On Outlier Benign Samples Severely Breaks Safety
- URL: http://arxiv.org/abs/2505.06843v2
- Date: Sun, 25 May 2025 16:09:40 GMT
- Title: Benign Samples Matter! Fine-tuning On Outlier Benign Samples Severely Breaks Safety
- Authors: Zihan Guan, Mengxuan Hu, Ronghang Zhu, Sheng Li, Anil Vullikanti,
- Abstract summary: We analyze and identify samples within benign datasets that contribute most to safety degradation.<n>We propose Self-Inf-N, to detect and extract outliers for fine-tuning.<n>Our results indicate that most existing mitigation strategies fail to defend against this attack.
- Score: 24.51481840826035
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent studies have uncovered a troubling vulnerability in the fine-tuning stage of large language models (LLMs): even fine-tuning on entirely benign datasets can lead to a significant increase in the harmfulness of LLM outputs. Building on this finding, our red teaming study takes this threat one step further by developing a more effective attack. Specifically, we analyze and identify samples within benign datasets that contribute most to safety degradation, then fine-tune LLMs exclusively on these samples. We approach this problem from an outlier detection perspective and propose Self-Inf-N, to detect and extract outliers for fine-tuning. Our findings reveal that fine-tuning LLMs on 100 outlier samples selected by Self-Inf-N in the benign datasets severely compromises LLM safety alignment. Extensive experiments across seven mainstream LLMs demonstrate that our attack exhibits high transferability across different architectures and remains effective in practical scenarios. Alarmingly, our results indicate that most existing mitigation strategies fail to defend against this attack, underscoring the urgent need for more robust alignment safeguards. Codes are available at https://github.com/GuanZihan/Benign-Samples-Matter.
Related papers
- LoX: Low-Rank Extrapolation Robustifies LLM Safety Against Fine-tuning [61.594212398272184]
Low-Rank Extrapolation (LoX) improves robustness against benign and malicious fine-tuning attacks.<n>LoX leads to 11% to 54% absolute reductions in attack success rates.
arXiv Detail & Related papers (2025-06-18T16:30:02Z) - SOFT: Selective Data Obfuscation for Protecting LLM Fine-tuning against Membership Inference Attacks [17.77094760401298]
We study the vulnerability of fine-tuned large language models to membership inference attacks (MIAs)<n>We propose SOFT, a novel defense technique that mitigates privacy leakage by leveraging influential data selection with an adjustable parameter to balance utility preservation and privacy protection.
arXiv Detail & Related papers (2025-06-12T07:23:56Z) - Do We Really Need Curated Malicious Data for Safety Alignment in Multi-modal Large Language Models? [83.53005932513155]
Multi-modal large language models (MLLMs) have made significant progress, yet their safety alignment remains limited.<n>We propose finetuning MLLMs on a small set of benign instruct-following data with responses replaced by simple, clear rejection sentences.
arXiv Detail & Related papers (2025-04-14T09:03:51Z) - Refining Positive and Toxic Samples for Dual Safety Self-Alignment of LLMs with Minimal Human Interventions [17.485655062129965]
Recent AI agents rely on instruction tuning and reinforcement learning to calibrate the output of large language models (LLMs) with human intentions.<n>We propose PT-ALIGN, a novel safety self-alignment approach that minimizes human supervision by automatically refining positive and toxic samples.<n> Experiments on 9 popular open-source LLMs demonstrate the effectiveness of our PT-ALIGN for safety alignment, while maintaining comparable levels of helpfulness and usefulness.
arXiv Detail & Related papers (2025-02-08T09:54:47Z) - Picky LLMs and Unreliable RMs: An Empirical Study on Safety Alignment after Instruction Tuning [39.48925539103229]
Fine-tuning large language models (LLMs) can inadvertently degrade their safety alignment.<n>This phenomenon makes models more susceptible to providing inappropriate responses.<n>Our work highlights the complexities of maintaining safety alignment during fine-tuning.
arXiv Detail & Related papers (2025-02-03T07:09:09Z) - Clear Minds Think Alike: What Makes LLM Fine-tuning Robust? A Study of Token Perplexity [61.48338027901318]
We show that fine-tuning with LLM-generated data improves target task performance and reduces out-of-domain degradation.<n>This is the first mechanistic explanation for the superior OOD robustness conferred by LLM-generated training data.
arXiv Detail & Related papers (2025-01-24T08:18:56Z) - Beyond the Safety Bundle: Auditing the Helpful and Harmless Dataset [4.522849055040843]
This study audited the Helpful and Harmless dataset by Anthropic.<n>Our findings highlight the need for more nuanced, context-sensitive approaches to safety mitigation in large language models.
arXiv Detail & Related papers (2024-11-12T23:43:20Z) - Safety-Aware Fine-Tuning of Large Language Models [29.5636201427693]
Fine-tuning Large Language Models (LLMs) has emerged as a common practice for tailoring models to individual needs and preferences.
We propose a novel Safety-Aware Fine-Tuning (SAFT) framework designed to automatically detect and remove potentially harmful data.
arXiv Detail & Related papers (2024-10-13T21:24:25Z) - Uncertainty Aware Learning for Language Model Alignment [97.36361196793929]
We propose uncertainty-aware learning (UAL) to improve the model alignment of different task scenarios.
We implement UAL in a simple fashion -- adaptively setting the label smoothing value of training according to the uncertainty of individual samples.
Experiments on widely used benchmarks demonstrate that our UAL significantly and consistently outperforms standard supervised fine-tuning.
arXiv Detail & Related papers (2024-06-07T11:37:45Z) - A Chinese Dataset for Evaluating the Safeguards in Large Language Models [46.43476815725323]
Large language models (LLMs) can produce harmful responses.
This paper introduces a dataset for the safety evaluation of Chinese LLMs.
We then extend it to two other scenarios that can be used to better identify false negative and false positive examples.
arXiv Detail & Related papers (2024-02-19T14:56:18Z) - ReEval: Automatic Hallucination Evaluation for Retrieval-Augmented Large Language Models via Transferable Adversarial Attacks [91.55895047448249]
This paper presents ReEval, an LLM-based framework using prompt chaining to perturb the original evidence for generating new test cases.
We implement ReEval using ChatGPT and evaluate the resulting variants of two popular open-domain QA datasets.
Our generated data is human-readable and useful to trigger hallucination in large language models.
arXiv Detail & Related papers (2023-10-19T06:37:32Z) - Do-Not-Answer: A Dataset for Evaluating Safeguards in LLMs [59.596335292426105]
This paper collects the first open-source dataset to evaluate safeguards in large language models.
We train several BERT-like classifiers to achieve results comparable with GPT-4 on automatic safety evaluation.
arXiv Detail & Related papers (2023-08-25T14:02:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.