NewsNet-SDF: Stochastic Discount Factor Estimation with Pretrained Language Model News Embeddings via Adversarial Networks
- URL: http://arxiv.org/abs/2505.06864v1
- Date: Sun, 11 May 2025 06:18:58 GMT
- Title: NewsNet-SDF: Stochastic Discount Factor Estimation with Pretrained Language Model News Embeddings via Adversarial Networks
- Authors: Shunyao Wang, Ming Cheng, Christina Dan Wang,
- Abstract summary: NewsNet-SDF is a novel deep learning framework that seamlessly integrates pretrained language model embeddings with financial time series.<n>Our dataset encompasses approximately 2.5 million news articles and 10,000 unique securities.
- Score: 7.014136939144529
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Stochastic Discount Factor (SDF) models provide a unified framework for asset pricing and risk assessment, yet traditional formulations struggle to incorporate unstructured textual information. We introduce NewsNet-SDF, a novel deep learning framework that seamlessly integrates pretrained language model embeddings with financial time series through adversarial networks. Our multimodal architecture processes financial news using GTE-multilingual models, extracts temporal patterns from macroeconomic data via LSTM networks, and normalizes firm characteristics, fusing these heterogeneous information sources through an innovative adversarial training mechanism. Our dataset encompasses approximately 2.5 million news articles and 10,000 unique securities, addressing the computational challenges of processing and aligning text data with financial time series. Empirical evaluations on U.S. equity data (1980-2022) demonstrate NewsNet-SDF substantially outperforms alternatives with a Sharpe ratio of 2.80. The model shows a 471% improvement over CAPM, over 200% improvement versus traditional SDF implementations, and a 74% reduction in pricing errors compared to the Fama-French five-factor model. In comprehensive comparisons, our deep learning approach consistently outperforms traditional, modern, and other neural asset pricing models across all key metrics. Ablation studies confirm that text embeddings contribute significantly more to model performance than macroeconomic features, with news-derived principal components ranking among the most influential determinants of SDF dynamics. These results validate the effectiveness of our multimodal deep learning approach in integrating unstructured text with traditional financial data for more accurate asset pricing, providing new insights for digital intelligent decision-making in financial technology.
Related papers
- An Advanced Ensemble Deep Learning Framework for Stock Price Prediction Using VAE, Transformer, and LSTM Model [4.097563258332958]
This research proposes a cutting-edge ensemble deep learning framework for stock price prediction by combining three advanced neural network architectures.<n>The framework uses rich set of technical indicators and it scales its predictors based on the current market situation.<n>It has a very important application in algorithmic trading, risk analysis, and control and decision-making for finance professions and scholars.
arXiv Detail & Related papers (2025-03-28T07:20:40Z) - A Deep Learning Framework Integrating CNN and BiLSTM for Financial Systemic Risk Analysis and Prediction [17.6825558707504]
This study proposes a deep learning model based on the combination of convolutional neural network (CNN) and bidirectional long short-term memory network (BiLSTM)<n>The model first uses CNN to extract local patterns of multidimensional features of financial markets, and then models the bidirectional dependency of time series through BiLSTM.<n>The results show that the model is significantly superior to traditional single models in terms of accuracy, recall, and F1 score.
arXiv Detail & Related papers (2025-02-07T07:57:11Z) - EUR/USD Exchange Rate Forecasting incorporating Text Mining Based on Pre-trained Language Models and Deep Learning Methods [0.0]
This study introduces a novel approach for EUR/USD exchange rate forecasting that integrates deep learning, textual analysis, and particle swarm optimization (PSO)
By incorporating online news and analysis texts as qualitative data, the proposed PSO-LSTM model demonstrates superior performance compared to traditional econometric and machine learning models.
arXiv Detail & Related papers (2024-11-12T05:28:52Z) - BreakGPT: Leveraging Large Language Models for Predicting Asset Price Surges [55.2480439325792]
This paper introduces BreakGPT, a novel large language model (LLM) architecture adapted specifically for time series forecasting and the prediction of sharp upward movements in asset prices.
We showcase BreakGPT as a promising solution for financial forecasting with minimal training and as a strong competitor for capturing both local and global temporal dependencies.
arXiv Detail & Related papers (2024-11-09T05:40:32Z) - High-Performance Few-Shot Segmentation with Foundation Models: An Empirical Study [64.06777376676513]
We develop a few-shot segmentation (FSS) framework based on foundation models.
To be specific, we propose a simple approach to extract implicit knowledge from foundation models to construct coarse correspondence.
Experiments on two widely used datasets demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2024-09-10T08:04:11Z) - EUR-USD Exchange Rate Forecasting Based on Information Fusion with Large Language Models and Deep Learning Methods [0.0]
This paper proposes a novel framework, IUS, that integrates unstructured textual data from news and analysis with structured data on exchange rates and financial indicators.
An Optuna-optimized Bi-LSTM model is then used to forecast the EUR/USD exchange rate.
Experiments demonstrate that the proposed method outperforms benchmark models, reducing MAE by 10.69% and RMSE by 9.56% compared to the best performing baseline.
arXiv Detail & Related papers (2024-08-23T16:46:36Z) - Unlocking the Potential of Model Merging for Low-Resource Languages [66.7716891808697]
Adapting large language models to new languages typically involves continual pre-training (CT) followed by supervised fine-tuning (SFT)
We propose model merging as an alternative for low-resource languages, combining models with distinct capabilities into a single model without additional training.
Experiments based on Llama-2-7B demonstrate that model merging effectively endows LLMs for low-resource languages with task-solving abilities, outperforming CT-then-SFT in scenarios with extremely scarce data.
arXiv Detail & Related papers (2024-07-04T15:14:17Z) - Incorporating Pre-trained Model Prompting in Multimodal Stock Volume
Movement Prediction [22.949484374773967]
We propose the Prompt-based MUltimodal Stock volumE prediction model (ProMUSE) to process text and time series modalities.
We use pre-trained language models for better comprehension of financial news.
We also propose a novel cross-modality contrastive alignment while reserving the unimodal heads beside the fusion head to mitigate this problem.
arXiv Detail & Related papers (2023-09-11T16:47:01Z) - Can ChatGPT Forecast Stock Price Movements? Return Predictability and Large Language Models [51.3422222472898]
We document the capability of large language models (LLMs) like ChatGPT to predict stock price movements using news headlines.
We develop a theoretical model incorporating information capacity constraints, underreaction, limits-to-arbitrage, and LLMs.
arXiv Detail & Related papers (2023-04-15T19:22:37Z) - Edge-assisted Democratized Learning Towards Federated Analytics [67.44078999945722]
We show the hierarchical learning structure of the proposed edge-assisted democratized learning mechanism, namely Edge-DemLearn.
We also validate Edge-DemLearn as a flexible model training mechanism to build a distributed control and aggregation methodology in regions.
arXiv Detail & Related papers (2020-12-01T11:46:03Z) - InfoBERT: Improving Robustness of Language Models from An Information
Theoretic Perspective [84.78604733927887]
Large-scale language models such as BERT have achieved state-of-the-art performance across a wide range of NLP tasks.
Recent studies show that such BERT-based models are vulnerable facing the threats of textual adversarial attacks.
We propose InfoBERT, a novel learning framework for robust fine-tuning of pre-trained language models.
arXiv Detail & Related papers (2020-10-05T20:49:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.