Federated Knowledge Recycling: Privacy-Preserving Synthetic Data Sharing
- URL: http://arxiv.org/abs/2407.20830v1
- Date: Tue, 30 Jul 2024 13:56:26 GMT
- Title: Federated Knowledge Recycling: Privacy-Preserving Synthetic Data Sharing
- Authors: Eugenio Lomurno, Matteo Matteucci,
- Abstract summary: Federated Knowledge Recycling (FedKR) is a cross-silo federated learning approach that uses locally generated synthetic data to facilitate collaboration between institutions.
FedKR combines advanced data generation techniques with a dynamic aggregation process to provide greater security against privacy attacks than existing methods.
- Score: 5.0243930429558885
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Federated learning has emerged as a paradigm for collaborative learning, enabling the development of robust models without the need to centralise sensitive data. However, conventional federated learning techniques have privacy and security vulnerabilities due to the exposure of models, parameters or updates, which can be exploited as an attack surface. This paper presents Federated Knowledge Recycling (FedKR), a cross-silo federated learning approach that uses locally generated synthetic data to facilitate collaboration between institutions. FedKR combines advanced data generation techniques with a dynamic aggregation process to provide greater security against privacy attacks than existing methods, significantly reducing the attack surface. Experimental results on generic and medical datasets show that FedKR achieves competitive performance, with an average improvement in accuracy of 4.24% compared to training models from local data, demonstrating particular effectiveness in data scarcity scenarios.
Related papers
- FEDLAD: Federated Evaluation of Deep Leakage Attacks and Defenses [50.921333548391345]
Federated Learning is a privacy preserving decentralized machine learning paradigm.
Recent research has revealed that private ground truth data can be recovered through a gradient technique known as Deep Leakage.
This paper introduces the FEDLAD Framework (Federated Evaluation of Deep Leakage Attacks and Defenses), a comprehensive benchmark for evaluating Deep Leakage attacks and defenses.
arXiv Detail & Related papers (2024-11-05T11:42:26Z) - Fed-Credit: Robust Federated Learning with Credibility Management [18.349127735378048]
Federated Learning (FL) is an emerging machine learning approach enabling model training on decentralized devices or data sources.
We propose a robust FL approach based on the credibility management scheme, called Fed-Credit.
The results exhibit superior accuracy and resilience against adversarial attacks, all while maintaining comparatively low computational complexity.
arXiv Detail & Related papers (2024-05-20T03:35:13Z) - Privacy-Preserving Debiasing using Data Augmentation and Machine Unlearning [3.049887057143419]
Data augmentation exposes machine learning models to privacy attacks, such as membership inference attacks.
We propose an effective combination of data augmentation and machine unlearning, which can reduce data bias while providing a provable defense against known attacks.
arXiv Detail & Related papers (2024-04-19T21:54:20Z) - FewFedPIT: Towards Privacy-preserving and Few-shot Federated Instruction Tuning [54.26614091429253]
Federated instruction tuning (FedIT) is a promising solution, by consolidating collaborative training across multiple data owners.
FedIT encounters limitations such as scarcity of instructional data and risk of exposure to training data extraction attacks.
We propose FewFedPIT, designed to simultaneously enhance privacy protection and model performance of federated few-shot learning.
arXiv Detail & Related papers (2024-03-10T08:41:22Z) - Federated Learning with Projected Trajectory Regularization [65.6266768678291]
Federated learning enables joint training of machine learning models from distributed clients without sharing their local data.
One key challenge in federated learning is to handle non-identically distributed data across the clients.
We propose a novel federated learning framework with projected trajectory regularization (FedPTR) for tackling the data issue.
arXiv Detail & Related papers (2023-12-22T02:12:08Z) - Conformalised data synthesis with statistical quality guarantees [0.0]
Data synthesis is a promising technique to address the demand of data-hungry models.
But reliably assessing the quality of a'synthesiser' model's output is an open research question.
We have designed a unique confident data synthesis algorithm that introduces statistical confidence guarantees.
arXiv Detail & Related papers (2023-12-14T14:44:08Z) - Combating Exacerbated Heterogeneity for Robust Models in Federated
Learning [91.88122934924435]
Combination of adversarial training and federated learning can lead to the undesired robustness deterioration.
We propose a novel framework called Slack Federated Adversarial Training (SFAT)
We verify the rationality and effectiveness of SFAT on various benchmarked and real-world datasets.
arXiv Detail & Related papers (2023-03-01T06:16:15Z) - CAFE: Learning to Condense Dataset by Aligning Features [72.99394941348757]
We propose a novel scheme to Condense dataset by Aligning FEatures (CAFE)
At the heart of our approach is an effective strategy to align features from the real and synthetic data across various scales.
We validate the proposed CAFE across various datasets, and demonstrate that it generally outperforms the state of the art.
arXiv Detail & Related papers (2022-03-03T05:58:49Z) - Towards Heterogeneous Clients with Elastic Federated Learning [45.2715985913761]
Federated learning involves training machine learning models over devices or data silos, such as edge processors or data warehouses, while keeping the data local.
We propose Elastic Federated Learning (EFL), an unbiased algorithm to tackle the heterogeneity in the system.
It is an efficient and effective algorithm that compresses both upstream and downstream communications.
arXiv Detail & Related papers (2021-06-17T12:30:40Z) - Towards Fair Federated Learning with Zero-Shot Data Augmentation [123.37082242750866]
Federated learning has emerged as an important distributed learning paradigm, where a server aggregates a global model from many client-trained models while having no access to the client data.
We propose a novel federated learning system that employs zero-shot data augmentation on under-represented data to mitigate statistical heterogeneity and encourage more uniform accuracy performance across clients in federated networks.
We study two variants of this scheme, Fed-ZDAC (federated learning with zero-shot data augmentation at the clients) and Fed-ZDAS (federated learning with zero-shot data augmentation at the server).
arXiv Detail & Related papers (2021-04-27T18:23:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.