A Black-box Testing Framework for Oracle Quantum Programs
- URL: http://arxiv.org/abs/2505.07243v1
- Date: Mon, 12 May 2025 05:31:55 GMT
- Title: A Black-box Testing Framework for Oracle Quantum Programs
- Authors: Peixun Long, Jianjun Zhao,
- Abstract summary: Oracle quantum programs serve as a critical bridge between quantum computing and classical computing.<n>This paper proposes a black-box testing framework for general oracle quantum programs.
- Score: 2.8611507672161265
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Oracle quantum programs are a fundamental class of quantum programs that serve as a critical bridge between quantum computing and classical computing. Many important quantum algorithms are built upon oracle quantum programs, making it essential to ensure their correctness during development. While software testing is a well-established approach for improving program reliability, no systematic method has been developed to test oracle quantum programs. This paper proposes a black-box testing framework designed for general oracle quantum programs. We define these programs formally, establish the foundational theory for their testing, and propose a detailed testing framework. We develop a prototype tool and conduct extensive experimental evaluations to evaluate the framework's effectiveness. Our results demonstrate that the proposed framework significantly aids developers in testing oracle quantum programs, providing insights to enhance the reliability of quantum software.
Related papers
- Quantum Executor: A Unified Interface for Quantum Computing [46.36953285198747]
Quantum Executor is a backend-agnostic execution engine designed to orchestrate quantum experiments across heterogeneous platforms.<n>Key features include support for asynchronous and distributed execution, customizable execution strategies and a unified API for managing quantum experiments.
arXiv Detail & Related papers (2025-07-10T09:55:32Z) - Context-Aware Unit Testing for Quantum Subroutines [14.117812847408523]
Testing quantum software presents unique challenges due to the non-deterministic nature of quantum information, the high dimensionality of the underlying Hilbert space, complex hardware noise, and the inherent non-local properties of quantum systems.<n>We propose incorporating context-awareness into the testing process to address the computational complexity associated with unit testing in quantum systems.
arXiv Detail & Related papers (2025-06-12T04:58:56Z) - Using quantum annealing to generate test cases for cyber-physical systems [35.26972474219581]
We propose a mutation-based approach to enhance test case generation for Cyber-Physical Systems.<n>We use quantum annealing to identify and target critical regions of the test cases for improvement.<n>Our approach mechanises this process into an algorithm that uses D-Wave's quantum annealer to find the solution.
arXiv Detail & Related papers (2025-04-30T14:20:58Z) - Validating Quantum State Preparation Programs [0.0]
This paper presents Pqasm: a high-assurance framework implemented with the Coq proof assistant.<n>The key in the framework is to reduce the program correctness assurance of a program containing a quantum superposition state to the program correctness assurance for the program state without superposition.<n>We utilize the QuickChick property-based testing framework to test state preparation programs.
arXiv Detail & Related papers (2025-01-09T23:35:26Z) - Concolic Testing of Quantum Programs [5.3611583388647635]
This paper presents the first concolic testing framework specifically designed for quantum programs.
The framework defines quantum conditional statements that quantify quantum states and presents a symbolization method for quantum variables.
arXiv Detail & Related papers (2024-05-08T07:32:19Z) - On Reducing the Execution Latency of Superconducting Quantum Processors via Quantum Job Scheduling [47.39648643132327]
We introduce the Quantum Job Scheduling Problem (QJSP) to improve the utility efficiency of quantum resources.<n>We propose a noise-aware quantum job scheduler (NAQJS) concerning the circuit width, number of measurement shots, and submission time of quantum jobs.<n>We conduct extensive experiments on a simulated Qiskit noise model, as well as on the Xiaohong (from QuantumCTek) superconducting quantum processor.
arXiv Detail & Related papers (2024-04-11T16:12:01Z) - The QUATRO Application Suite: Quantum Computing for Models of Human
Cognition [49.038807589598285]
We unlock a new class of applications ripe for quantum computing research -- computational cognitive modeling.
We release QUATRO, a collection of quantum computing applications from cognitive models.
arXiv Detail & Related papers (2023-09-01T17:34:53Z) - Quantum Conformal Prediction for Reliable Uncertainty Quantification in
Quantum Machine Learning [47.991114317813555]
Quantum models implement implicit probabilistic predictors that produce multiple random decisions for each input through measurement shots.
This paper proposes to leverage such randomness to define prediction sets for both classification and regression that provably capture the uncertainty of the model.
arXiv Detail & Related papers (2023-04-06T22:05:21Z) - Symbolic quantum programming for supporting applications of quantum
computing technologies [0.0]
The main focus of this paper is on quantum computing technologies, as they can in the most direct way benefit from developing tools.
We deliver a short survey of the most popular approaches in the field of quantum software development and we aim at pointing their strengths and weaknesses.
Next, we describe a software architecture and its preliminary implementation supporting the development of quantum programs using symbolic approach.
arXiv Detail & Related papers (2023-02-18T18:30:00Z) - Assessing requirements to scale to practical quantum advantage [56.22441723982983]
We develop a framework for quantum resource estimation, abstracting the layers of the stack, to estimate resources required for large-scale quantum applications.
We assess three scaled quantum applications and find that hundreds of thousands to millions of physical qubits are needed to achieve practical quantum advantage.
A goal of our work is to accelerate progress towards practical quantum advantage by enabling the broader community to explore design choices across the stack.
arXiv Detail & Related papers (2022-11-14T18:50:27Z) - Qafny: A Quantum-Program Verifier [39.47005122712576]
We present Qafny, an automated proof system for verifying quantum programs.
At its core, Qafny uses a type-guided quantum proof system that translates quantum operations to classical array operations.
We show how Qafny can efficiently verify important quantum algorithms, including quantum-walk algorithms, Grover's algorithm, and Shor's algorithm.
arXiv Detail & Related papers (2022-11-11T18:50:52Z) - Formal Verification of Quantum Programs: Theory, Tools and Challenges [0.0]
Survey aims to be a short introduction into the area of formal verification of quantum programs.
This survey examines some of the challenges that the field may face in the future, namely the development of complex quantum algorithms.
arXiv Detail & Related papers (2021-10-04T11:00:48Z) - On exploring the potential of quantum auto-encoder for learning quantum systems [60.909817434753315]
We devise three effective QAE-based learning protocols to address three classically computational hard learning problems.
Our work sheds new light on developing advanced quantum learning algorithms to accomplish hard quantum physics and quantum information processing tasks.
arXiv Detail & Related papers (2021-06-29T14:01:40Z) - Preparing random states and benchmarking with many-body quantum chaos [48.044162981804526]
We show how to predict and experimentally observe the emergence of random state ensembles naturally under time-independent Hamiltonian dynamics.
The observed random ensembles emerge from projective measurements and are intimately linked to universal correlations built up between subsystems of a larger quantum system.
Our work has implications for understanding randomness in quantum dynamics, and enables applications of this concept in a wider context.
arXiv Detail & Related papers (2021-03-05T08:32:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.