論文の概要: Semantic Retention and Extreme Compression in LLMs: Can We Have Both?
- arxiv url: http://arxiv.org/abs/2505.07289v1
- Date: Mon, 12 May 2025 07:23:19 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-13 20:21:49.287491
- Title: Semantic Retention and Extreme Compression in LLMs: Can We Have Both?
- Title(参考訳): LLMにおけるセマンティック・リテンションとエクストリーム・コンプレッション:両立可能か?
- Authors: Stanislas Laborde, Martin Cousseau, Antoun Yaacoub, Lionel Prevost,
- Abstract要約: LLM(Large Language Model)デプロイメントでは,効率的なモデル圧縮技術の必要性が高まっている。
我々は, プルーニングと量子化を戦略的に組み合わせることで, 高い性能・圧縮比が得られることを示す。
本稿では,モデル圧縮と意味保存のトレードオフを定量化する新しい指標であるセマンティック保持圧縮率(SrCr)を紹介する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The exponential growth in Large Language Model (LLM) deployment has intensified the need for efficient model compression techniques to reduce computational and memory costs. While pruning and quantization have shown promise, their combined potential remains largely unexplored. In this paper, we examine joint compression and how strategically combining pruning and quantization could yield superior performance-to-compression ratios compared to single-method approaches. Recognizing the challenges in accurately assessing LLM performance, we address key limitations of previous evaluation frameworks and introduce the Semantic Retention Compression Rate (SrCr), a novel metric that quantifies the trade-off between model compression and semantic preservation, facilitating the optimization of pruning-quantization configurations. Experiments demonstrate that our recommended combination achieves, on average, a 20% performance increase compared to an equivalent quantization-only model at the same theoretical compression rate.
- Abstract(参考訳): LLM(Large Language Model)デプロイメントの指数的増加により、計算とメモリコストを削減するための効率的なモデル圧縮技術の必要性が高まっている。
刈り取りと量子化は将来性を示してきたが、それらの組み合わせの可能性はほとんど未解明のままである。
本稿では, 共同圧縮について検討し, プルーニングと量子化を戦略的に組み合わせることで, 単一手法と比較して, 性能・圧縮比が向上することを示した。
LLMの性能を正確に評価する上での課題を認識し、従来の評価フレームワークの重要な制限に対処し、モデル圧縮と意味保存のトレードオフを定量化し、プルーニング量子化構成の最適化を容易にする新しい指標であるセマンティック保持圧縮率(SrCr)を導入する。
実験により,提案した組み合わせは,同じ理論的圧縮速度で等価量子化のみのモデルと比較して平均20%の性能向上を達成できた。
関連論文リスト
- When Compression Meets Model Compression: Memory-Efficient Double Compression for Large Language Models [12.687035979970194]
本稿では,量子化後の大規模言語モデル(LLM)を圧縮するフレームワークを提案する。
量子化に先立ってモデルパラメータを再スケーリングすることにより, モデル重量圧縮性を高めるために, 圧縮対応量子化法が最初に提案され, さらにさらに改良するプルーニング法が提案されている。
圧縮されたモデルによる推論は、精度と推論速度の損失を無視して、メモリサイズを40%削減できることを示す実験である。
論文 参考訳(メタデータ) (2025-02-21T13:11:22Z) - Optimizing Singular Spectrum for Large Language Model Compression [95.7621116637755]
SVDの分解したコンポーネントをデータ駆動で再スケールする新しい圧縮フレームワークであるSoCoを紹介する。
学習可能な特異スペクトルのおかげで、SoCoは重要度スコアに応じて成分を適応的にプーンする。
複数のLLMおよびベンチマークでの実験的な評価は、SoCoがモデル圧縮における最先端の手法を超越していることを示している。
論文 参考訳(メタデータ) (2025-02-20T23:18:39Z) - Choose Your Model Size: Any Compression by a Single Gradient Descent [9.074689052563878]
イテレーティブ・プルーニング(ACIP)による圧縮について紹介する。
ACIPは、単一の勾配降下ランから圧縮性能トレードオフを決定するアルゴリズム的なアプローチである。
本稿では,ACIPが共通量子化に基づく圧縮手法をシームレスに補完することを示す。
論文 参考訳(メタデータ) (2025-02-03T18:40:58Z) - Lower Bounds and Accelerated Algorithms in Distributed Stochastic Optimization with Communication Compression [39.65082601416051]
通信圧縮は通信オーバーヘッドを軽減するための重要な戦略である。
軽度条件下での圧縮のほぼ最適アルゴリズムであるNEOLITHICを提案する。
論文 参考訳(メタデータ) (2023-05-12T17:02:43Z) - Learning Accurate Performance Predictors for Ultrafast Automated Model
Compression [86.22294249097203]
フレキシブルネットワーク展開のための超高速自動モデル圧縮フレームワークSeerNetを提案する。
本手法は,探索コストを大幅に削減した競合精度・複雑度トレードオフを実現する。
論文 参考訳(メタデータ) (2023-04-13T10:52:49Z) - Towards Optimal Compression: Joint Pruning and Quantization [1.191194620421783]
本稿では,FITCompressについて紹介する。FITCompressは層単位での混合精度の量子化と非構造化プルーニングを組み合わせた新しい手法である。
コンピュータビジョンと自然言語処理ベンチマークの実験により,提案手法が優れた圧縮性能のトレードオフを実現することを示す。
論文 参考訳(メタデータ) (2023-02-15T12:02:30Z) - Optimal Brain Compression: A Framework for Accurate Post-Training
Quantization and Pruning [29.284147465251685]
重み付けと量子化の両方を統一した環境でカバーする新しい圧縮フレームワークを提案する。
既存のポストトレーニング手法の圧縮精度トレードオフにより, 大幅な改善が期待できることを示す。
論文 参考訳(メタデータ) (2022-08-24T14:33:35Z) - Efficient Micro-Structured Weight Unification and Pruning for Neural
Network Compression [56.83861738731913]
ディープニューラルネットワーク(DNN)モデルは、特にリソース制限されたデバイスにおいて、実用的なアプリケーションに不可欠である。
既往の非構造的あるいは構造化された重量刈り法は、推論を真に加速することはほとんど不可能である。
ハードウェア互換のマイクロ構造レベルでの一般化された重み統一フレームワークを提案し,高い圧縮と加速度を実現する。
論文 参考訳(メタデータ) (2021-06-15T17:22:59Z) - An Efficient Statistical-based Gradient Compression Technique for
Distributed Training Systems [77.88178159830905]
Sparsity-Inducing Distribution-based Compression (SIDCo) は閾値に基づくスペーシフィケーションスキームであり、DGCと同等のしきい値推定品質を享受する。
SIDCoは,非圧縮ベースライン,Topk,DGC圧縮機と比較して,最大で41:7%,7:6%,1:9%の速度でトレーニングを高速化する。
論文 参考訳(メタデータ) (2021-01-26T13:06:00Z) - Learning, compression, and leakage: Minimising classification error via
meta-universal compression principles [87.054014983402]
学習シナリオのための圧縮技法の有望なグループは、正規化極大(NML)符号化である。
ここでは,教師付き分類問題に対するNMLに基づく意思決定戦略を検討し,多種多様なモデルに適用した場合にPAC学習を実現することを示す。
本手法の誤分類率は,プライバシに敏感なシナリオにおいて,データ漏洩の可能性を定量化するための指標である最大リークによって上限づけられていることを示す。
論文 参考訳(メタデータ) (2020-10-14T20:03:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。