論文の概要: ViMRHP: A Vietnamese Benchmark Dataset for Multimodal Review Helpfulness Prediction via Human-AI Collaborative Annotation
- arxiv url: http://arxiv.org/abs/2505.07416v1
- Date: Mon, 12 May 2025 10:11:28 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-13 20:21:49.348035
- Title: ViMRHP: A Vietnamese Benchmark Dataset for Multimodal Review Helpfulness Prediction via Human-AI Collaborative Annotation
- Title(参考訳): ViMRHP: ベトナムのマルチモーダルレビューのためのベンチマークデータセット
- Authors: Truc Mai-Thanh Nguyen, Dat Minh Nguyen, Son T. Luu, Kiet Van Nguyen,
- Abstract要約: ベトナムにおけるMRHPタスクのための大規模ベンチマークデータセットViMRHP(Vietnamese Multimodal Review Helpfulness Prediction)を紹介する。
このデータセットは、46Kレビュー付き2K製品を含む4つのドメインをカバーする。
AIアシストでは、AIを活用して、ViMRHPデータセットを構築するアノテータを支援します。
- 参考スコア(独自算出の注目度): 0.964547614383472
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Multimodal Review Helpfulness Prediction (MRHP) is an essential task in recommender systems, particularly in E-commerce platforms. Determining the helpfulness of user-generated reviews enhances user experience and improves consumer decision-making. However, existing datasets focus predominantly on English and Indonesian, resulting in a lack of linguistic diversity, especially for low-resource languages such as Vietnamese. In this paper, we introduce ViMRHP (Vietnamese Multimodal Review Helpfulness Prediction), a large-scale benchmark dataset for MRHP task in Vietnamese. This dataset covers four domains, including 2K products with 46K reviews. Meanwhile, a large-scale dataset requires considerable time and cost. To optimize the annotation process, we leverage AI to assist annotators in constructing the ViMRHP dataset. With AI assistance, annotation time is reduced (90 to 120 seconds per task down to 20 to 40 seconds per task) while maintaining data quality and lowering overall costs by approximately 65%. However, AI-generated annotations still have limitations in complex annotation tasks, which we further examine through a detailed performance analysis. In our experiment on ViMRHP, we evaluate baseline models on human-verified and AI-generated annotations to assess their quality differences. The ViMRHP dataset is publicly available at https://github.com/trng28/ViMRHP
- Abstract(参考訳): マルチモーダルレビュー ヘルプフルネス予測(MRHP)はレコメンダシステム、特にEコマースプラットフォームにおいて重要な課題である。
ユーザ生成レビューの有用性の決定は、ユーザエクスペリエンスを高め、消費者の意思決定を改善する。
しかし、既存のデータセットは主に英語とインドネシア語に焦点を当てており、特にベトナム語のような低リソース言語では言語多様性が欠如している。
本稿ではベトナムにおけるMRHPタスクの大規模ベンチマークデータセットであるViMRHP(Vietnamese Multimodal Review Helpfulness Prediction)を紹介する。
このデータセットは、46Kレビュー付き2K製品を含む4つのドメインをカバーする。
一方、大規模なデータセットにはかなりの時間とコストが必要です。
アノテーション処理を最適化するために、AIを活用して、ViMRHPデータセットを構築するアノテータを支援する。
AIアシストでは、アノテーションの時間(タスク毎90~120秒からタスク毎20~40秒)が短縮され、データ品質が維持され、全体的なコストが約65%削減される。
しかし、AI生成アノテーションは、複雑なアノテーションタスクにはまだ制限があり、詳細なパフォーマンス分析を通してさらに検証する。
ViMRHPの実験では、人間の検証およびAI生成アノテーションのベースラインモデルを評価し、それらの品質差を評価する。
ViMRHPデータセットはhttps://github.com/trng28/ViMRHPで公開されている。
関連論文リスト
- VLFeedback: A Large-Scale AI Feedback Dataset for Large Vision-Language Models Alignment [55.7956150385255]
本稿では,視覚言語モデルの整合性向上のためのAIフィードバックの有効性について検討する。
最初の大規模視覚言語フィードバックデータセットであるVLFeedbackを紹介する。
我々は、VLFeedback上で直接選好最適化によって微調整されたLVLMであるSilkieを訓練する。
論文 参考訳(メタデータ) (2024-10-12T07:56:47Z) - MTVQA: Benchmarking Multilingual Text-Centric Visual Question Answering [58.92057773071854]
MTVQAは、9つの異なる言語にまたがる高品質なヒューマンエキスパートアノテーションを特徴とする最初のベンチマークである。
MTVQAは9つの異なる言語にわたる高品質なヒューマンエキスパートアノテーションを特徴とする最初のベンチマークである。
論文 参考訳(メタデータ) (2024-05-20T12:35:01Z) - ViCLEVR: A Visual Reasoning Dataset and Hybrid Multimodal Fusion Model
for Visual Question Answering in Vietnamese [1.6340299456362617]
ベトナムにおける様々な視覚的推論能力を評価するための先駆的な収集であるViCLEVRデータセットを紹介した。
我々は、現代の視覚的推論システムの包括的な分析を行い、その強みと限界についての貴重な洞察を提供する。
PhoVITは、質問に基づいて画像中のオブジェクトを識別する総合的なマルチモーダル融合である。
論文 参考訳(メタデータ) (2023-10-27T10:44:50Z) - DeVAn: Dense Video Annotation for Video-Language Models [68.70692422636313]
実世界のビデオクリップに記述を生成する視覚言語モデルの有効性を評価するために,人間の注釈付きデータセットを提案する。
データセットには、20秒から60秒間の8.5KのYouTubeビデオクリップが含まれており、幅広いトピックや関心事をカバーしている。
論文 参考訳(メタデータ) (2023-10-08T08:02:43Z) - UltraFeedback: Boosting Language Models with Scaled AI Feedback [99.4633351133207]
大規模で高品質で多様なAIフィードバックデータセットである textscUltraFeedback を提示する。
我々の研究は、強力なオープンソースのチャット言語モデルを構築する上で、スケールしたAIフィードバックデータの有効性を検証する。
論文 参考訳(メタデータ) (2023-10-02T17:40:01Z) - SEAHORSE: A Multilingual, Multifaceted Dataset for Summarization
Evaluation [52.186343500576214]
本稿では,多言語・多面的要約評価のためのデータセットSEAHORSEを紹介する。
SEAHORSEは、テキスト品質の6次元に沿って人間格付けされた96Kの要約で構成されている。
本稿では,SEAHORSEでトレーニングしたメトリクスが,ドメイン外メタ評価ベンチマークTRUEとmFACEで高い性能を示すことを示す。
論文 参考訳(メタデータ) (2023-05-22T16:25:07Z) - VLSP 2021 Shared Task: Vietnamese Machine Reading Comprehension [2.348805691644086]
本稿では,共有タスクの組織化,共有タスク参加者の実施方法の概要,その結果について述べる。
ベトナム語に対する MRC タスクと質問応答システムを評価するためのベンチマークデータセット UIT-ViQuAD 2.0 を提供する。
UIT-ViQuAD 2.0データセットは、ベトナムの機械読解、質問応答、質問生成を研究するためのより多くの研究者を動機付けている。
論文 参考訳(メタデータ) (2022-03-22T00:44:41Z) - Sentence Extraction-Based Machine Reading Comprehension for Vietnamese [0.2446672595462589]
UIT-ViWikiQAは,ベトナム語における文抽出に基づく機械読解に関する最初のデータセットである。
このデータセットは、ウィキペディアから174のベトナム語記事の5.109節に基づく23.074の質問回答からなる。
我々の実験によると、最良のマシンモデルはXLM-R$_Largeであり、これは正確な一致(EM)スコアが85.97%、F1スコアが88.77%である。
論文 参考訳(メタデータ) (2021-05-19T10:22:27Z) - A Vietnamese Dataset for Evaluating Machine Reading Comprehension [2.7528170226206443]
ベトナム語として低リソース言語のための新しいデータセットであるUIT-ViQuADを提案する。
このデータセットは、ウィキペディアから174のベトナム語記事の5,109節に基づいて、23,000人以上の人が生成した質問応答ペアで構成されている。
UIT-ViQuADの最初の実験モデルとして、英語と中国語の最先端MRC手法の実験を行った。
論文 参考訳(メタデータ) (2020-09-30T15:06:56Z) - Enhancing lexical-based approach with external knowledge for Vietnamese
multiple-choice machine reading comprehension [2.5199066832791535]
我々はベトナム語の417のテキストに基づいて,2,783対の複数選択質問と回答からなるデータセットを構築した。
本稿では,意味的類似度尺度と外部知識源を用いて質問を分析し,与えられたテキストから回答を抽出する語彙ベースのMDC手法を提案する。
提案手法は,最良ベースラインモデルよりも5.51%高い精度で61.81%の精度を実現する。
論文 参考訳(メタデータ) (2020-01-16T08:09:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。