Kalman Filter Enhanced GRPO for Reinforcement Learning-Based Language Model Reasoning
- URL: http://arxiv.org/abs/2505.07527v2
- Date: Wed, 21 May 2025 08:49:01 GMT
- Title: Kalman Filter Enhanced GRPO for Reinforcement Learning-Based Language Model Reasoning
- Authors: Hu Wang, Congbo Ma, Ian Reid, Mohammad Yaqub,
- Abstract summary: Group Relative Policy Optimization ( GRPO) is proposed to compute the advantage for each output by subtracting the mean reward, as the baseline, for all outputs in the group.<n>It can lead to inaccurate advantage estimates in environments with highly noisy rewards, potentially introducing bias.<n>We propose a model, called Kalman Filter Enhanced Group Relative Policy Optimization (KRPO), by using lightweight Kalman filtering to dynamically estimate the latent reward mean and variance.
- Score: 11.708197376569016
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Reward baseline is important for Reinforcement Learning (RL) algorithms to reduce variance in policy gradient estimates. Recently, for language modeling, Group Relative Policy Optimization (GRPO) is proposed to compute the advantage for each output by subtracting the mean reward, as the baseline, for all outputs in the group. However, it can lead to inaccurate advantage estimates in environments with highly noisy rewards, potentially introducing bias. In this work, we propose a model, called Kalman Filter Enhanced Group Relative Policy Optimization (KRPO), by using lightweight Kalman filtering to dynamically estimate the latent reward mean and variance. This filtering technique replaces the naive batch mean baseline, enabling more adaptive advantage normalization. Our method does not require additional learned parameters over GRPO. This approach offers a simple yet effective way to incorporate multiple outputs of GRPO into advantage estimation, improving policy optimization in settings where highly dynamic reward signals are difficult to model for language models. Through accuracy and rewards obtained from math question answering and reasoning, we show that using a more adaptive advantage estimation model, KRPO can improve the stability and performance of GRPO. The code is available at https://github.com/billhhh/KRPO_LLMs_RL.
Related papers
- On-Policy RL with Optimal Reward Baseline [109.47676554514193]
On-Policy RL with Optimal reward baseline (OPO) is a novel and simplified reinforcement learning algorithm.<n>OPO emphasizes the importance of exact on-policy training, which empirically stabilizes the training process and enhances exploration.<n>Results demonstrate OPO's superior performance and training stability without additional models or regularization terms.
arXiv Detail & Related papers (2025-05-29T15:58:04Z) - Accelerating RL for LLM Reasoning with Optimal Advantage Regression [52.0792918455501]
We propose a novel two-stage policy optimization framework that directly approximates the optimal advantage function.<n>$A$*-PO achieves competitive performance across a wide range of mathematical reasoning benchmarks.<n>It reduces training time by up to 2$times$ and peak memory usage by over 30% compared to PPO, GRPO, and REBEL.
arXiv Detail & Related papers (2025-05-27T03:58:50Z) - A Minimalist Approach to LLM Reasoning: from Rejection Sampling to Reinforce [68.99924691391048]
We revisit GRPO from a reinforce-like algorithm perspective and analyze its core components.<n>We find that a simple rejection sampling baseline, RAFT, yields competitive performance than GRPO and PPO.<n>Motivated by this insight, we propose Reinforce-Rej, a minimal extension of policy gradient that filters both entirely incorrect and entirely correct samples.
arXiv Detail & Related papers (2025-04-15T16:15:02Z) - Optimizing Safe and Aligned Language Generation: A Multi-Objective GRPO Approach [2.8626097661711394]
Reinforcement Learning from Human Feedback has achieved notable success in steering models, but is complex and can be unstable.<n>Recent approaches such as Direct Preference Optimization (DPO) simplify preference-based fine-tuning but may introduce bias or trade-off certain objectives.<n>We propose a Group Relative Policy Optimization framework with a multi-label reward regression model to achieve safe and aligned language generation.
arXiv Detail & Related papers (2025-03-26T05:50:33Z) - Lean and Mean: Decoupled Value Policy Optimization with Global Value Guidance [52.65461207786633]
Policy-based Reinforcement Learning from Human Feedback is essential for aligning large language models with human preferences.<n>It requires joint training of an actor and critic with a pretrained, fixed reward model for guidance.<n>We propose textbfDecoupled Value Policy Optimization (DVPO), a lean framework that replaces traditional reward modeling with a pretrained emphglobal value model (GVM)
arXiv Detail & Related papers (2025-02-24T08:11:33Z) - $α$-DPO: Adaptive Reward Margin is What Direct Preference Optimization Needs [45.46582930202524]
$alpha$-DPO is an adaptive preference optimization algorithm for large language models.
It balances the policy model and the reference model to achieve personalized reward margins.
It consistently outperforms DPO and SimPO across various model settings.
arXiv Detail & Related papers (2024-10-14T04:29:57Z) - Zeroth-Order Policy Gradient for Reinforcement Learning from Human Feedback without Reward Inference [15.038210624870656]
Reward inference is a critical intermediate step in the Reinforcement Learning from Human Feedback pipeline.<n>This paper develops two RLHF algorithms without reward inference for general RL problems beyond bandits and deterministic MDP bandit, and general preference models beyond the Bradley-Terry model.
arXiv Detail & Related papers (2024-09-25T22:20:11Z) - Policy Filtration for RLHF to Mitigate Noise in Reward Models [27.278933096153974]
Policy filtering for Proximal Policy Optimization (PF-PPO)<n>PF-PPO improves the signal-to-noise ratio during policy learning.<n>We provide experiments to validate the effectiveness of PF-PPO in code generation and math reasoning tasks.
arXiv Detail & Related papers (2024-09-11T02:40:38Z) - Provably Mitigating Overoptimization in RLHF: Your SFT Loss is Implicitly an Adversarial Regularizer [52.09480867526656]
We identify the source of misalignment as a form of distributional shift and uncertainty in learning human preferences.<n>To mitigate overoptimization, we first propose a theoretical algorithm that chooses the best policy for an adversarially chosen reward model.<n>Using the equivalence between reward models and the corresponding optimal policy, the algorithm features a simple objective that combines a preference optimization loss and a supervised learning loss.
arXiv Detail & Related papers (2024-05-26T05:38:50Z) - Self-Play Preference Optimization for Language Model Alignment [75.83359213697854]
Recent advancements suggest that directly working with preference probabilities can yield a more accurate reflection of human preferences.
We propose a self-play-based method for language model alignment, which treats the problem as a constant-sum two-player game.
Our approach, dubbed Self-Play Preference Optimization (SPPO), utilizes iterative policy updates to provably approximate the Nash equilibrium.
arXiv Detail & Related papers (2024-05-01T17:59:20Z) - REBEL: Reinforcement Learning via Regressing Relative Rewards [59.68420022466047]
We propose REBEL, a minimalist RL algorithm for the era of generative models.<n>In theory, we prove that fundamental RL algorithms like Natural Policy Gradient can be seen as variants of REBEL.<n>We find that REBEL provides a unified approach to language modeling and image generation with stronger or similar performance as PPO and DPO.
arXiv Detail & Related papers (2024-04-25T17:20:45Z) - Preference as Reward, Maximum Preference Optimization with Importance Sampling [3.7040071165219595]
We propose a simple and intuitive off-policy preference optimization algorithm from an importance sampling view, which we call Maximum Preference Optimization (MPO)
MPO achieves the best of both worlds by combining the objectives of RLHF and IPO while being an off-policy algorithm.
arXiv Detail & Related papers (2023-12-27T06:34:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.