論文の概要: Injecting Knowledge Graphs into Large Language Models
- arxiv url: http://arxiv.org/abs/2505.07554v1
- Date: Mon, 12 May 2025 13:31:26 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-13 20:21:49.405141
- Title: Injecting Knowledge Graphs into Large Language Models
- Title(参考訳): 大規模言語モデルに知識グラフを注入する
- Authors: Erica Coppolillo,
- Abstract要約: 我々は,大規模言語モデル内のグラフ埋め込みをトークンとして統合するエンコーディング技術を構築した。
我々のアプローチは、モデルに依存しず、リソース効率が良く、どのLLMとも互換性がある。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Integrating structured knowledge from Knowledge Graphs (KGs) into Large Language Models (LLMs) remains a key challenge for symbolic reasoning. Existing methods mainly rely on prompt engineering or fine-tuning, which lose structural fidelity or incur high computational costs. Building on recent encoding techniques which integrate graph embeddings within the LLM input as tokens, we extend this paradigm to the KG domain by leveraging Knowledge Graph Embedding (KGE) models, thus enabling graph-aware reasoning. Our approach is model-agnostic, resource-efficient, and compatible with any LLMs. Extensive experimentation on synthetic and real-world datasets shows that our method improves reasoning performance over established baselines, further achieving the best trade-off in terms of accuracy and efficiency against state-of-the-art LLMs.
- Abstract(参考訳): 知識グラフ(KG)からの構造化知識をLarge Language Models(LLM)に統合することは、シンボリック推論の重要な課題である。
既存の手法は主に素早い工学や微調整に依存しており、構造的忠実さを失うか、高い計算コストがかかる。
LLM入力のグラフ埋め込みをトークンとして統合する最近の符号化技術に基づいて、知識グラフ埋め込み(KGE)モデルを活用することにより、このパラダイムをKGドメインに拡張し、グラフ認識推論を可能にする。
我々のアプローチは、モデルに依存しず、リソース効率が良く、どのLLMとも互換性がある。
合成および実世界のデータセットに対する大規模な実験により,提案手法は確立されたベースラインよりも推論性能を向上し,最先端のLCMに対する精度と効率の両面で最高のトレードオフを達成できることが示されている。
関連論文リスト
- GraphOmni: A Comprehensive and Extendable Benchmark Framework for Large Language Models on Graph-theoretic Tasks [15.147178364098034]
LLMのグラフ推論能力を評価するためのベンチマークフレームワークであるGraph Omniを提案する。
以上の結果から, 単連化やプロンプト戦略が他より一貫して優れていないことが示唆された。
これらの知見に感化され、我々は、最高のシリアライズとプロンプトのペアリングを動的に選択する強化学習に基づくアプローチを提案する。
論文 参考訳(メタデータ) (2025-04-17T09:01:16Z) - Grounding LLM Reasoning with Knowledge Graphs [4.279373869671241]
我々は、知識グラフと推論戦略を統合することで、KGデータにおける推論チェーンのすべてのステップまたは"思想"をアンカーする。
我々は,Chain-of-Thought (CoT), Tree-of-Thought (ToT), Graph-of-Thought (GoT) など,いくつかの推論手法によるエージェント検索と自動検索の両方を評価した。
我々の実験は、このアプローチがベースラインモデルより一貫して優れていることを示した。
論文 参考訳(メタデータ) (2025-02-18T19:20:46Z) - In-Context Learning with Topological Information for Knowledge Graph Completion [3.035601871864059]
我々は,知識グラフの性能を向上させるために,文脈内学習を通じてトポロジ情報を組み込む新しい手法を開発した。
提案手法は,テストグラフデータセット内のノードがトレーニンググラフデータセットに存在するような,トランスダクティブな設定において,高いパフォーマンスを実現する。
提案手法は,ILPC小データセットとILPC大データセットのベースラインよりも優れた性能を示す。
論文 参考訳(メタデータ) (2024-12-11T19:29:36Z) - Comprehending Knowledge Graphs with Large Language Models for Recommender Systems [13.270018897057293]
知識グラフを改善するために,CoLaKGと呼ばれる新しい手法を提案する。
項目中心のサブグラフ抽出とプロンプトエンジニアリングを用いることで、ローカル情報を正確に理解することができる。
さらに、意味に基づく検索モジュールを通じて、各項目は知識グラフ全体の関連項目によって濃縮される。
論文 参考訳(メタデータ) (2024-10-16T04:44:34Z) - How to Make LLMs Strong Node Classifiers? [70.14063765424012]
言語モデル(LM)は、グラフニューラルネットワーク(GNN)やグラフトランスフォーマー(GT)など、ドメイン固有のモデルの優位性に挑戦している。
本稿では,ノード分類タスクにおける最先端(SOTA)GNNに匹敵する性能を実現するために,既製のLMを有効活用する手法を提案する。
論文 参考訳(メタデータ) (2024-10-03T08:27:54Z) - All Against Some: Efficient Integration of Large Language Models for Message Passing in Graph Neural Networks [51.19110891434727]
事前訓練された知識と強力なセマンティック理解能力を持つ大規模言語モデル(LLM)は、最近、視覚とテキストデータを使用してアプリケーションに恩恵をもたらす顕著な能力を示している。
E-LLaGNNは、グラフから限られたノード数を増やして、グラフ学習のメッセージパッシング手順を強化するオンデマンドLLMサービスを備えたフレームワークである。
論文 参考訳(メタデータ) (2024-07-20T22:09:42Z) - Disentangled Representation Learning with Large Language Models for
Text-Attributed Graphs [57.052160123387104]
本稿では,TAGに対するLLMの推論と予測能力を向上させることができるDGTLモデルを提案する。
提案するDGTLモデルでは, グラフ構造情報をGNN層に組み込む。
実験により,提案したDGTLモデルにより,最先端のベースラインよりも優れた性能,あるいは同等の性能が得られることを示した。
論文 参考訳(メタデータ) (2023-10-27T14:00:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。