論文の概要: Quantizing Text-attributed Graphs for Semantic-Structural Integration
- arxiv url: http://arxiv.org/abs/2507.19526v1
- Date: Sun, 20 Jul 2025 09:18:02 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-29 16:23:55.472965
- Title: Quantizing Text-attributed Graphs for Semantic-Structural Integration
- Title(参考訳): 意味構造統合のためのテキスト属性グラフの量子化
- Authors: Jianyuan Bo, Hao Wu, Yuan Fang,
- Abstract要約: テキスト分散グラフ(TAG)は、様々な領域にわたる複雑な関係をモデル化するための強力な表現として登場した。
大規模言語モデル(LLM)の台頭に伴い、グラフ学習に彼らの能力を活用することへの関心が高まっている。
凍結したコードブックを用いて,グラフ構造情報を離散トークンに直接量子化する,新たな自己教師型フレームワークSTAGを提案する。
- 参考スコア(独自算出の注目度): 6.721504414917793
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Text-attributed graphs (TAGs) have emerged as a powerful representation for modeling complex relationships across diverse domains. With the rise of large language models (LLMs), there is growing interest in leveraging their capabilities for graph learning. However, current approaches face significant challenges in embedding structural information into LLM-compatible formats, requiring either computationally expensive alignment mechanisms or manual graph verbalization techniques that often lose critical structural details. Moreover, these methods typically require labeled data from source domains for effective transfer learning, significantly constraining their adaptability. We propose STAG, a novel self-supervised framework that directly quantizes graph structural information into discrete tokens using a frozen codebook. Unlike traditional quantization approaches, our method employs soft assignment and KL divergence guided quantization to address the unique challenges of graph data, which lacks natural tokenization structures. Our framework enables both LLM-based and traditional learning approaches, supporting true zero-shot transfer learning without requiring labeled data even in the source domain. Extensive experiments demonstrate state-of-the-art performance across multiple node classification benchmarks while maintaining compatibility with different LLM architectures, offering an elegant solution to bridging graph learning with LLMs.
- Abstract(参考訳): テキスト分散グラフ(TAG)は、様々な領域にわたる複雑な関係をモデル化するための強力な表現として登場した。
大規模言語モデル(LLM)の台頭に伴い、グラフ学習に彼らの能力を活用することへの関心が高まっている。
しかしながら、現在のアプローチでは、LLM互換フォーマットに構造情報を埋め込むという大きな課題に直面しており、計算に高価なアライメント機構か、しばしば重要な構造の詳細を失う手動グラフの言語化技術が必要である。
さらに、これらの手法は通常、効果的な転送学習のためにソースドメインからのラベル付きデータを必要とし、それらの適応性を著しく制限する。
凍結したコードブックを用いて,グラフ構造情報を離散トークンに直接量子化する,新たな自己教師型フレームワークSTAGを提案する。
従来の量子化手法とは異なり、本手法ではソフト代入とKL分散誘導量子化を用いて、自然なトークン化構造を持たないグラフデータの独特な課題に対処する。
我々のフレームワークは、LLMベースの学習と従来の学習の両方を可能にし、ソースドメインでもラベル付きデータを必要とせず、真のゼロショット転送学習をサポートする。
大規模な実験では、異なるLLMアーキテクチャとの互換性を維持しながら、複数のノード分類ベンチマークで最先端のパフォーマンスを実証し、LLMでグラフ学習をブリッジするエレガントなソリューションを提供する。
関連論文リスト
- Learning Efficient and Generalizable Graph Retriever for Knowledge-Graph Question Answering [75.12322966980003]
大規模言語モデル(LLM)は、様々な領域にわたって強い帰納的推論能力を示している。
既存のRAGパイプラインのほとんどは非構造化テキストに依存しており、解釈可能性と構造化推論を制限する。
近年,知識グラフ解答のための知識グラフとLLMの統合について検討している。
KGQAにおける効率的なグラフ検索のための新しいフレームワークであるRAPLを提案する。
論文 参考訳(メタデータ) (2025-06-11T12:03:52Z) - Scalability Matters: Overcoming Challenges in InstructGLM with Similarity-Degree-Based Sampling [1.2805157669888096]
提案するSDM-InstructGLMは,GNNに依存することなく,拡張性と効率を向上する命令調整グラフ言語モデル(InstructGLM)フレームワークである。
本手法では,ノード間類似度と次数集中度に基づいてグラフ情報を選択的にサンプリングし,符号化する,類似度に基づくバイアス付きランダムウォーク機構を提案する。
本結果は,LLMのみのグラフ処理の実現可能性を示し,命令ベースの微調整によって最適化されたスケーラブルかつ解釈可能なグラフ言語モデル(GLM)を実現する。
論文 参考訳(メタデータ) (2025-05-02T06:08:21Z) - Graph Learning in the Era of LLMs: A Survey from the Perspective of Data, Models, and Tasks [25.720233631885726]
グラフニューラルネットワーク(GNN)とLarge Language Models(LLM)の統合は、有望な技術パラダイムとして現れている。
データ品質を根本的に向上させるために、リッチなセマンティックコンテキストを持つグラフ記述テキストを活用します。
この研究は、グラフ学習方法論の進歩を目指す研究者や実践者にとって、基礎的な参考となる。
論文 参考訳(メタデータ) (2024-12-17T01:41:17Z) - Bridging Large Language Models and Graph Structure Learning Models for Robust Representation Learning [22.993015048941444]
グラフ表現学習は現実世界のアプリケーションには不可欠だが、広範にわたるノイズに遭遇することが多い。
本稿では,事前学習された言語モデルとグラフ構造学習モデルの相補的な長所を統合するフレームワークであるLangGSLを紹介する。
論文 参考訳(メタデータ) (2024-10-15T22:43:32Z) - NT-LLM: A Novel Node Tokenizer for Integrating Graph Structure into Large Language Models [26.739650151993928]
グラフは、現実世界のシナリオにおける関係を表現するための基本的なデータ構造である。
グラフ関連のタスクにLLM(Large Language Models)を適用することは、大きな課題となる。
我々は,グラフ構造を効率的にエンコードする新しいフレームワークNT-LLM(Node Tokenizer for Large Language Models)を紹介する。
論文 参考訳(メタデータ) (2024-10-14T17:21:57Z) - Learning to Model Graph Structural Information on MLPs via Graph Structure Self-Contrasting [50.181824673039436]
本稿では,グラフ構造情報をメッセージパッシングなしで学習するグラフ構造自己コントラスト(GSSC)フレームワークを提案する。
提案するフレームワークは,構造情報を事前知識として暗黙的にのみ組み込む,MLP(Multi-Layer Perceptrons)に基づいている。
これはまず、近傍の潜在的非形式的あるいはノイズの多いエッジを取り除くために構造的スペーシングを適用し、その後、スペーシングされた近傍で構造的自己コントラストを行い、ロバストなノード表現を学ぶ。
論文 参考訳(メタデータ) (2024-09-09T12:56:02Z) - A Pure Transformer Pretraining Framework on Text-attributed Graphs [50.833130854272774]
グラフ構造を先行として扱うことで,特徴中心の事前学習の視点を導入する。
我々のフレームワークであるGraph Sequence Pretraining with Transformer (GSPT)はランダムウォークを通してノードコンテキストをサンプリングする。
GSPTはノード分類とリンク予測の両方に容易に適応でき、様々なデータセットで有望な経験的成功を示す。
論文 参考訳(メタデータ) (2024-06-19T22:30:08Z) - Multi-View Empowered Structural Graph Wordification for Language Models [12.22063024099311]
本稿では,LLM-graphアライメントのためのエンドツーエンドのモダリティアライメントフレームワークについて紹介する。
提案手法は LLM とのトークンレベルアライメントを容易にするために設計されており,グラフの内在的' を理解可能な自然言語に効果的に翻訳することができる。
我々のフレームワークは、LLMとGNN間のトークンレベルのアライメントを実現するための、有望な試みである、ある視覚的解釈可能性、効率、堅牢性を保証する。
論文 参考訳(メタデータ) (2024-06-19T16:43:56Z) - GraphEdit: Large Language Models for Graph Structure Learning [14.16155596597421]
グラフ構造学習(GSL)は、グラフ構造データ中のノード間の固有の依存関係と相互作用をキャプチャすることに焦点を当てている。
既存のGSL法は、監督信号として明示的なグラフ構造情報に大きく依存している。
グラフ構造化データの複雑なノード関係を学習するために,大規模言語モデル(LLM)を利用したグラフ編集を提案する。
論文 参考訳(メタデータ) (2024-02-23T08:29:42Z) - Disentangled Representation Learning with Large Language Models for
Text-Attributed Graphs [57.052160123387104]
本稿では,TAGに対するLLMの推論と予測能力を向上させることができるDGTLモデルを提案する。
提案するDGTLモデルでは, グラフ構造情報をGNN層に組み込む。
実験により,提案したDGTLモデルにより,最先端のベースラインよりも優れた性能,あるいは同等の性能が得られることを示した。
論文 参考訳(メタデータ) (2023-10-27T14:00:04Z) - Exploiting Structured Knowledge in Text via Graph-Guided Representation
Learning [73.0598186896953]
本稿では、知識グラフからのガイダンスを用いて、生テキスト上で学習する2つの自己教師型タスクを提案する。
エンティティレベルのマスキング言語モデルに基づいて、最初のコントリビューションはエンティティマスキングスキームです。
既存のパラダイムとは対照的に,本手法では事前学習時にのみ,知識グラフを暗黙的に使用する。
論文 参考訳(メタデータ) (2020-04-29T14:22:42Z) - Tensor Graph Convolutional Networks for Multi-relational and Robust
Learning [74.05478502080658]
本稿では,テンソルで表されるグラフの集合に関連するデータから,スケーラブルな半教師付き学習(SSL)を実現するためのテンソルグラフ畳み込みネットワーク(TGCN)を提案する。
提案アーキテクチャは、標準的なGCNと比較して大幅に性能が向上し、最先端の敵攻撃に対処し、タンパク質間相互作用ネットワーク上でのSSL性能が著しく向上する。
論文 参考訳(メタデータ) (2020-03-15T02:33:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。