論文の概要: GraphOmni: A Comprehensive and Extendable Benchmark Framework for Large Language Models on Graph-theoretic Tasks
- arxiv url: http://arxiv.org/abs/2504.12764v1
- Date: Thu, 17 Apr 2025 09:01:16 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-18 14:35:22.915043
- Title: GraphOmni: A Comprehensive and Extendable Benchmark Framework for Large Language Models on Graph-theoretic Tasks
- Title(参考訳): GraphOmni: グラフ理論タスク上の大規模言語モデルのための総合的で拡張可能なベンチマークフレームワーク
- Authors: Hao Xu, Xiangru Jian, Xinjian Zhao, Wei Pang, Chao Zhang, Suyuchen Wang, Qixin Zhang, Joao Monteiro, Qiuzhuang Sun, Tianshu Yu,
- Abstract要約: LLMのグラフ推論能力を評価するためのベンチマークフレームワークであるGraph Omniを提案する。
以上の結果から, 単連化やプロンプト戦略が他より一貫して優れていないことが示唆された。
これらの知見に感化され、我々は、最高のシリアライズとプロンプトのペアリングを動的に選択する強化学習に基づくアプローチを提案する。
- 参考スコア(独自算出の注目度): 15.147178364098034
- License:
- Abstract: In this paper, we presented GraphOmni, a comprehensive benchmark framework for systematically evaluating the graph reasoning capabilities of LLMs. By analyzing critical dimensions, including graph types, serialization formats, and prompt schemes, we provided extensive insights into the strengths and limitations of current LLMs. Our empirical findings emphasize that no single serialization or prompting strategy consistently outperforms others. Motivated by these insights, we propose a reinforcement learning-based approach that dynamically selects the best serialization-prompt pairings, resulting in significant accuracy improvements. GraphOmni's modular and extensible design establishes a robust foundation for future research, facilitating advancements toward general-purpose graph reasoning models.
- Abstract(参考訳): 本稿では,LLMのグラフ推論能力を体系的に評価するベンチマークフレームワークであるGraphOmniについて述べる。
グラフタイプ,シリアライズ形式,プロンプトスキームなどの重要な次元を解析することにより,現在のLLMの強度と限界について広範な知見を得た。
私たちの経験的発見は、単一シリアライゼーションやプロンプト戦略が他よりも一貫して優れていないことを強調しています。
これらの知見を活かして,直列化とプロンプトのペアリングを動的に選択する強化学習に基づく手法を提案する。
GraphOmniのモジュールで拡張可能な設計は、将来の研究の堅牢な基盤を確立し、汎用グラフ推論モデルへの進歩を促進する。
関連論文リスト
- GraphICL: Unlocking Graph Learning Potential in LLMs through Structured Prompt Design [13.365623514253926]
Graph In-Context Learning (GraphICL)ベンチマークは、グラフ構造をキャプチャし、限られたラベル知識を扱う新しいプロンプトテンプレートからなる包括的なベンチマークである。
システム評価の結果,GraphICLを用いた汎用LLMは,最先端の特殊グラフLLMやグラフニューラルネットワークモデルよりも優れていた。
論文 参考訳(メタデータ) (2025-01-27T03:50:30Z) - Revisiting Graph Neural Networks on Graph-level Tasks: Comprehensive Experiments, Analysis, and Improvements [54.006506479865344]
グラフレベルグラフニューラルネットワーク(GNN)のための統一評価フレームワークを提案する。
このフレームワークは、さまざまなデータセットにわたるGNNを評価するための標準化された設定を提供する。
また,表現性の向上と一般化機能を備えた新しいGNNモデルを提案する。
論文 参考訳(メタデータ) (2025-01-01T08:48:53Z) - Towards Graph Foundation Models: A Study on the Generalization of Positional and Structural Encodings [36.58861528662219]
位置的および構造的符号化(PSE)がグラフニューラルネットワーク(GNN)に統合された
本稿では,様々なグラフデータセット間での学習可能なPSEの微調整効率,サンプルサイズによるスケーラビリティ,一般化,能力について検討する。
論文 参考訳(メタデータ) (2024-12-10T10:58:47Z) - A Hierarchical Language Model For Interpretable Graph Reasoning [47.460255447561906]
ノード中心の局所情報と相互作用中心のグローバル構造を捉えるために2ブロックアーキテクチャを用いる階層型グラフ言語モデル(HLM-G)を導入する。
提案手法は,大規模グラフ処理における計算コストを削減しつつ,高い効率性,効率性,ロバスト性で様々なグラフクエリに対処することを可能にする。
多様なグラフ推論およびノード,リンク,グラフレベルの実世界のタスクに対する総合的な評価は,本手法の優位性を強調している。
論文 参考訳(メタデータ) (2024-10-29T00:28:02Z) - How Do Large Language Models Understand Graph Patterns? A Benchmark for Graph Pattern Comprehension [53.6373473053431]
この研究は、グラフパターンタスクにおける大規模言語モデルの能力を評価するためのベンチマークを導入する。
我々は,LLMが用語的記述と位相的記述の両方に基づいて,グラフパターンを理解できるかどうかを評価するベンチマークを開発した。
私たちのベンチマークでは、合成データセットと実際のデータセットの両方と、11のタスクと7のモデルで構成されています。
論文 参考訳(メタデータ) (2024-10-04T04:48:33Z) - MuseGraph: Graph-oriented Instruction Tuning of Large Language Models
for Generic Graph Mining [41.19687587548107]
グラフニューラルネットワーク(GNN)は、異なるグラフタスクやデータセットに適用されるたびに、再トレーニングされる必要がある。
GNNとLarge Language Models(LLM)の強みをシームレスに統合する新しいフレームワークMusteGraphを提案する。
実験結果から,異なるグラフタスクの大幅な改善が示された。
論文 参考訳(メタデータ) (2024-03-02T09:27:32Z) - Disentangled Representation Learning with Large Language Models for
Text-Attributed Graphs [57.052160123387104]
本稿では,TAGに対するLLMの推論と予測能力を向上させることができるDGTLモデルを提案する。
提案するDGTLモデルでは, グラフ構造情報をGNN層に組み込む。
実験により,提案したDGTLモデルにより,最先端のベースラインよりも優れた性能,あるいは同等の性能が得られることを示した。
論文 参考訳(メタデータ) (2023-10-27T14:00:04Z) - Beyond Text: A Deep Dive into Large Language Models' Ability on
Understanding Graph Data [13.524529952170672]
大規模言語モデル(LLM)は多くの自然言語処理タスクにおいて顕著な性能を達成している。
LLMがグラフデータを効果的に処理し、トポロジ構造を利用して性能を向上させることができるかどうかを評価することを目的とする。
LLMの性能を特殊グラフモデルと比較することにより、グラフ解析にLLMを使用する際の長所と短所について考察する。
論文 参考訳(メタデータ) (2023-10-07T23:25:22Z) - Exploring Large Language Model for Graph Data Understanding in Online
Job Recommendations [63.19448893196642]
本稿では,大規模言語モデルが提供するリッチな文脈情報と意味表現を利用して行動グラフを解析する新しいフレームワークを提案する。
この機能を利用することで、個々のユーザに対してパーソナライズされた、正確なジョブレコメンデーションが可能になる。
論文 参考訳(メタデータ) (2023-07-10T11:29:41Z) - Model-Agnostic Graph Regularization for Few-Shot Learning [60.64531995451357]
グラフ組み込み数ショット学習に関する包括的な研究を紹介します。
本稿では,ラベル間のグラフ情報の組み込みによる影響をより深く理解できるグラフ正規化手法を提案する。
提案手法は,Mini-ImageNetで最大2%,ImageNet-FSで6.7%の性能向上を実現する。
論文 参考訳(メタデータ) (2021-02-14T05:28:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。