Trial and Trust: Addressing Byzantine Attacks with Comprehensive Defense Strategy
- URL: http://arxiv.org/abs/2505.07614v2
- Date: Mon, 09 Jun 2025 14:01:53 GMT
- Title: Trial and Trust: Addressing Byzantine Attacks with Comprehensive Defense Strategy
- Authors: Gleb Molodtsov, Daniil Medyakov, Sergey Skorik, Nikolas Khachaturov, Shahane Tigranyan, Vladimir Aletov, Aram Avetisyan, Martin Takáč, Aleksandr Beznosikov,
- Abstract summary: In this paper, we address a specific threat, Byzantine attacks, where compromised clients inject adversarial updates to derail global convergence.<n>We combine the trust scores concept with trial function methodology to dynamically filter outliers.<n>Our methods address the critical limitations of previous approaches, allowing functionality even when Byzantine nodes are in the majority.
- Score: 37.73859687331454
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent advancements in machine learning have improved performance while also increasing computational demands. While federated and distributed setups address these issues, their structure is vulnerable to malicious influences. In this paper, we address a specific threat, Byzantine attacks, where compromised clients inject adversarial updates to derail global convergence. We combine the trust scores concept with trial function methodology to dynamically filter outliers. Our methods address the critical limitations of previous approaches, allowing functionality even when Byzantine nodes are in the majority. Moreover, our algorithms adapt to widely used scaled methods like Adam and RMSProp, as well as practical scenarios, including local training and partial participation. We validate the robustness of our methods by conducting extensive experiments on both synthetic and real ECG data collected from medical institutions. Furthermore, we provide a broad theoretical analysis of our algorithms and their extensions to aforementioned practical setups. The convergence guarantees of our methods are comparable to those of classical algorithms developed without Byzantine interference.
Related papers
- FedStrategist: A Meta-Learning Framework for Adaptive and Robust Aggregation in Federated Learning [0.10241134756773229]
Federated Learning (FL) offers a paradigm for privacy-preserving collaborative AI, but its decentralized nature creates significant vulnerabilities to model poisoning attacks.<n>This paper introduces FedStrategist, a novel meta-learning framework that reframes robust aggregation as a real-time, cost-aware control problem.
arXiv Detail & Related papers (2025-07-18T18:53:26Z) - DATABench: Evaluating Dataset Auditing in Deep Learning from an Adversarial Perspective [59.66984417026933]
We introduce a novel taxonomy, classifying existing methods based on their reliance on internal features (IF) (inherent to the data) versus external features (EF) (artificially introduced for auditing)<n>We formulate two primary attack types: evasion attacks, designed to conceal the use of a dataset, and forgery attacks, intending to falsely implicate an unused dataset.<n>Building on the understanding of existing methods and attack objectives, we further propose systematic attack strategies: decoupling, removal, and detection for evasion; adversarial example-based methods for forgery.<n>Our benchmark, DATABench, comprises 17 evasion attacks, 5 forgery attacks, and 9
arXiv Detail & Related papers (2025-07-08T03:07:15Z) - Byzantine-Resilient Over-the-Air Federated Learning under Zero-Trust Architecture [68.83934802584899]
We propose a novel Byzantine-robust FL paradigm for over-the-air transmissions, referred to as federated learning with secure adaptive clustering (FedSAC)<n>FedSAC aims to protect a portion of the devices from attacks through zero trust architecture (ZTA) based Byzantine identification and adaptive device clustering.<n> Numerical results substantiate the superiority of the proposed FedSAC over existing methods in terms of both test accuracy and convergence rate.
arXiv Detail & Related papers (2025-03-24T01:56:30Z) - Byzantine-Robust and Communication-Efficient Distributed Learning via Compressed Momentum Filtering [17.446431849022346]
Distributed learning has become the standard approach for training large-scale machine learning models across private data silos.
It faces critical challenges related to robustness and communication preservation.
We propose a novel Byzantine-robust and communication-efficient distributed learning method.
arXiv Detail & Related papers (2024-09-13T08:53:10Z) - Efficient Adversarial Training in LLMs with Continuous Attacks [99.5882845458567]
Large language models (LLMs) are vulnerable to adversarial attacks that can bypass their safety guardrails.
We propose a fast adversarial training algorithm (C-AdvUL) composed of two losses.
C-AdvIPO is an adversarial variant of IPO that does not require utility data for adversarially robust alignment.
arXiv Detail & Related papers (2024-05-24T14:20:09Z) - READ: Improving Relation Extraction from an ADversarial Perspective [33.44949503459933]
We propose an adversarial training method specifically designed for relation extraction (RE)
Our approach introduces both sequence- and token-level perturbations to the sample and uses a separate perturbation vocabulary to improve the search for entity and context perturbations.
arXiv Detail & Related papers (2024-04-02T16:42:44Z) - Byzantine-Robust Online and Offline Distributed Reinforcement Learning [60.970950468309056]
We consider a distributed reinforcement learning setting where multiple agents explore the environment and communicate their experiences through a central server.
$alpha$-fraction of agents are adversarial and can report arbitrary fake information.
We seek to identify a near-optimal policy for the underlying Markov decision process in the presence of these adversarial agents.
arXiv Detail & Related papers (2022-06-01T00:44:53Z) - A Unified Wasserstein Distributional Robustness Framework for
Adversarial Training [24.411703133156394]
This paper presents a unified framework that connects Wasserstein distributional robustness with current state-of-the-art AT methods.
We introduce a new Wasserstein cost function and a new series of risk functions, with which we show that standard AT methods are special cases of their counterparts in our framework.
This connection leads to an intuitive relaxation and generalization of existing AT methods and facilitates the development of a new family of distributional robustness AT-based algorithms.
arXiv Detail & Related papers (2022-02-27T19:40:29Z) - A black-box adversarial attack for poisoning clustering [78.19784577498031]
We propose a black-box adversarial attack for crafting adversarial samples to test the robustness of clustering algorithms.
We show that our attacks are transferable even against supervised algorithms such as SVMs, random forests, and neural networks.
arXiv Detail & Related papers (2020-09-09T18:19:31Z) - Opportunities and Challenges in Deep Learning Adversarial Robustness: A
Survey [1.8782750537161614]
This paper studies strategies to implement adversary robustly trained algorithms towards guaranteeing safety in machine learning algorithms.
We provide a taxonomy to classify adversarial attacks and defenses, formulate the Robust Optimization problem in a min-max setting, and divide it into 3 subcategories, namely: Adversarial (re)Training, Regularization Approach, and Certified Defenses.
arXiv Detail & Related papers (2020-07-01T21:00:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.