AI-Based Crypto Tokens: The Illusion of Decentralized AI?
- URL: http://arxiv.org/abs/2505.07828v1
- Date: Tue, 29 Apr 2025 13:44:33 GMT
- Title: AI-Based Crypto Tokens: The Illusion of Decentralized AI?
- Authors: Rischan Mafrur,
- Abstract summary: AI-tokens are cryptographic assets designed to power decentralized AI platforms and services.<n>This paper provides a comprehensive review of leading AI-token projects.<n>We assess the extent to which they offer value beyond traditional centralized AI services.
- Score: 0.10878040851637999
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The convergence of blockchain and artificial intelligence (AI) has led to the emergence of AI-based tokens, which are cryptographic assets designed to power decentralized AI platforms and services. This paper provides a comprehensive review of leading AI-token projects, examining their technical architectures, token utilities, consensus mechanisms, and underlying business models. We explore how these tokens operate across various blockchain ecosystems and assess the extent to which they offer value beyond traditional centralized AI services. Based on this assessment, our analysis identifies several core limitations. From a technical perspective, many platforms depend extensively on off-chain computation, exhibit limited capabilities for on-chain intelligence, and encounter significant scalability challenges. From a business perspective, many models appear to replicate centralized AI service structures, simply adding token-based payment and governance layers without delivering truly novel value. In light of these challenges, we also examine emerging developments that may shape the next phase of decentralized AI systems. These include approaches for on-chain verification of AI outputs, blockchain-enabled federated learning, and more robust incentive frameworks. Collectively, while emerging innovations offer pathways to strengthen decentralized AI ecosystems, significant gaps remain between the promises and the realities of current AI-token implementations. Our findings contribute to a growing body of research at the intersection of AI and blockchain, highlighting the need for critical evaluation and more grounded approaches as the field continues to evolve.
Related papers
- AI Flow: Perspectives, Scenarios, and Approaches [51.38621621775711]
We introduce AI Flow, a framework that integrates cutting-edge IT and CT advancements.<n>First, device-edge-cloud framework serves as the foundation, which integrates end devices, edge servers, and cloud clusters.<n>Second, we introduce the concept of familial models, which refers to a series of different-sized models with aligned hidden features.<n>Third, connectivity- and interaction-based intelligence emergence is a novel paradigm of AI Flow.
arXiv Detail & Related papers (2025-06-14T12:43:07Z) - Ai-Driven Vulnerability Analysis in Smart Contracts: Trends, Challenges and Future Directions [0.2797210504706914]
Vulnerabilities such as numerical overflows, reentrancy attacks, and improper access permissions have led to the loss of millions of dollars.<n>Traditional smart contract auditing techniques face limitations in scalability, automation, and adaptability to evolving development patterns.<n>This paper examines novel AI-driven techniques for vulnerability detection in smart contracts, focusing on machine learning, deep learning, graph neural networks, and transformer-based models.
arXiv Detail & Related papers (2025-06-07T09:44:26Z) - Blockchain As a Platform For Artificial Intelligence (AI) Transparency [0.0]
"Black box" problem in AI decision-making limits stakeholders' ability to understand, trust, and verify outcomes.<n>This paper explores the integration of blockchain with AI to improve decision traceability, provenance data, and model accountability.<n>Findings suggest that blockchain could be a technology for ensuring AI systems remain accountable, ethical, and aligned with regulatory standards.
arXiv Detail & Related papers (2025-03-07T01:57:26Z) - AIArena: A Blockchain-Based Decentralized AI Training Platform [3.5828467632119305]
We propose AIArena, a decentralized AI training platform designed to democratize AI development and alignment through on-chain incentive mechanisms.<n>We instantiate and implement AIArena on the public Base blockchain Sepolia testnet, and the evaluation results demonstrate the feasibility of AIArena in real-world applications.
arXiv Detail & Related papers (2024-12-19T06:35:54Z) - Overview of AI and Communication for 6G Network: Fundamentals, Challenges, and Future Research Opportunities [148.601430677814]
This paper presents a comprehensive overview of AI and communication for 6G networks.<n>We first review the driving factors behind incorporating AI into wireless communications, as well as the vision for the convergence of AI and 6G.<n>The discourse then transitions to a detailed exposition of the envisioned integration of AI within 6G networks.
arXiv Detail & Related papers (2024-12-19T05:36:34Z) - SoK: Decentralized AI (DeAI) [4.651101982820699]
We present a Systematization of Knowledge (SoK) for blockchain-based DeAI solutions.<n>Based on this taxonomy, we provide a structured way to clarify the landscape of DeAI protocols.<n>We investigate how blockchain features contribute to enhancing the security, transparency, and trustworthiness of AI processes.
arXiv Detail & Related papers (2024-11-26T14:28:25Z) - OML: Open, Monetizable, and Loyal AI [39.63122342758896]
We propose OML, which stands for Open, Monetizable, and Loyal AI.
OML is an approach designed to democratize AI development.
Key innovation of our work is introducing a new scientific field: AI-native cryptography.
arXiv Detail & Related papers (2024-11-01T18:46:03Z) - Position Paper: Agent AI Towards a Holistic Intelligence [53.35971598180146]
We emphasize developing Agent AI -- an embodied system that integrates large foundation models into agent actions.
In this paper, we propose a novel large action model to achieve embodied intelligent behavior, the Agent Foundation Model.
arXiv Detail & Related papers (2024-02-28T16:09:56Z) - Generative AI-enabled Blockchain Networks: Fundamentals, Applications,
and Case Study [73.87110604150315]
Generative Artificial Intelligence (GAI) has emerged as a promising solution to address challenges of blockchain technology.
In this paper, we first introduce GAI techniques, outline their applications, and discuss existing solutions for integrating GAI into blockchains.
arXiv Detail & Related papers (2024-01-28T10:46:17Z) - AI Maintenance: A Robustness Perspective [91.28724422822003]
We introduce highlighted robustness challenges in the AI lifecycle and motivate AI maintenance by making analogies to car maintenance.
We propose an AI model inspection framework to detect and mitigate robustness risks.
Our proposal for AI maintenance facilitates robustness assessment, status tracking, risk scanning, model hardening, and regulation throughout the AI lifecycle.
arXiv Detail & Related papers (2023-01-08T15:02:38Z) - Is Decentralized AI Safer? [0.0]
Various groups are building open AI systems, investigating their risks, and discussing their ethics.
In this paper, we demonstrate how blockchain technology can facilitate and formalize these efforts.
We argue that decentralizing AI can help mitigate AI risks and ethical concerns, while also introducing new issues that should be considered in future work.
arXiv Detail & Related papers (2022-11-04T01:01:31Z) - Building Bridges: Generative Artworks to Explore AI Ethics [56.058588908294446]
In recent years, there has been an increased emphasis on understanding and mitigating adverse impacts of artificial intelligence (AI) technologies on society.
A significant challenge in the design of ethical AI systems is that there are multiple stakeholders in the AI pipeline, each with their own set of constraints and interests.
This position paper outlines some potential ways in which generative artworks can play this role by serving as accessible and powerful educational tools.
arXiv Detail & Related papers (2021-06-25T22:31:55Z) - Empowering Things with Intelligence: A Survey of the Progress,
Challenges, and Opportunities in Artificial Intelligence of Things [98.10037444792444]
We show how AI can empower the IoT to make it faster, smarter, greener, and safer.
First, we present progress in AI research for IoT from four perspectives: perceiving, learning, reasoning, and behaving.
Finally, we summarize some promising applications of AIoT that are likely to profoundly reshape our world.
arXiv Detail & Related papers (2020-11-17T13:14:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.