論文の概要: Symbolic Regression with Multimodal Large Language Models and Kolmogorov Arnold Networks
- arxiv url: http://arxiv.org/abs/2505.07956v1
- Date: Mon, 12 May 2025 18:00:41 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-14 20:57:54.294163
- Title: Symbolic Regression with Multimodal Large Language Models and Kolmogorov Arnold Networks
- Title(参考訳): マルチモーダル大言語モデルとコルモゴロフアーノルドネットワークを用いたシンボリック回帰
- Authors: Thomas R. Harvey, Fabian Ruehle, Cristofero S. Fraser-Taliente, James Halverson,
- Abstract要約: 視覚対応型大言語モデル(LLM)を用いた記号回帰の新しい手法を提案する。
この手法は回帰に使用する関数セットの仕様を必要としないが、適切なプロンプトエンジニアリングにより、生成ステップを任意に条件付けることができる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a novel approach to symbolic regression using vision-capable large language models (LLMs) and the ideas behind Google DeepMind's Funsearch. The LLM is given a plot of a univariate function and tasked with proposing an ansatz for that function. The free parameters of the ansatz are fitted using standard numerical optimisers, and a collection of such ans\"atze make up the population of a genetic algorithm. Unlike other symbolic regression techniques, our method does not require the specification of a set of functions to be used in regression, but with appropriate prompt engineering, we can arbitrarily condition the generative step. By using Kolmogorov Arnold Networks (KANs), we demonstrate that ``univariate is all you need'' for symbolic regression, and extend this method to multivariate functions by learning the univariate function on each edge of a trained KAN. The combined expression is then simplified by further processing with a language model.
- Abstract(参考訳): 本稿では,視覚対応型大規模言語モデル(LLM)と,Google DeepMindのFunsearchの背景にある概念を用いた記号回帰手法を提案する。
LLMは単変量関数のプロットを与えられ、その関数に対してアンザッツを提案する。
アンザッツの自由パラメータは標準的な数値オプティマイザを用いて調整され、そのようなアンサッツのコレクションは遺伝的アルゴリズムの人口を構成する。
他の記号レグレッション手法とは異なり、この手法では回帰に使用する関数のセットの指定を必要としないが、適切なプロンプトエンジニアリングにより、生成ステップを任意に条件付けることができる。
Kolmogorov Arnold Networks (KANs) を用いて、シンボリック回帰のために ''univariate is all you need''' を証明し、訓練されたカンの各端のユニバリケート関数を学習することにより、この手法を多変量関数に拡張する。
複合表現は言語モデルでさらに処理することで単純化される。
関連論文リスト
- $p$-Adic Polynomial Regression as Alternative to Neural Network for Approximating $p$-Adic Functions of Many Variables [55.2480439325792]
任意の精度で連続関数を近似できる回帰モデルを構築している。
提案モデルは、ニューラルネットワークアーキテクチャに基づく$p$-adicモデルの簡単な代替と見なすことができる。
論文 参考訳(メタデータ) (2025-03-30T15:42:08Z) - Universal Neural Functionals [67.80283995795985]
多くの現代の機械学習タスクでは、ウェイトスペース機能を処理することが難しい問題である。
最近の研究は、単純なフィードフォワードネットワークの置換対称性に同値な有望な重み空間モデルを開発した。
本研究は,任意の重み空間に対する置換同変モデルを自動的に構築するアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-02-07T20:12:27Z) - Deep Generative Symbolic Regression [83.04219479605801]
記号回帰は、データから簡潔な閉形式数学的方程式を発見することを目的としている。
既存の手法は、探索から強化学習まで、入力変数の数に応じてスケールできない。
本稿では,我々のフレームワークであるDeep Generative Symbolic Regressionのインスタンス化を提案する。
論文 参考訳(メタデータ) (2023-12-30T17:05:31Z) - GINN-LP: A Growing Interpretable Neural Network for Discovering
Multivariate Laurent Polynomial Equations [1.1142444517901018]
本稿では,解釈可能なニューラルネットワークであるGINN-LPを提案する。
私たちの知る限りでは、これは注文に関する事前情報なしで任意の項を発見できる最初のニューラルネットワークである。
GINN-LPは,データセット上での最先端のシンボル回帰手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2023-12-18T03:44:29Z) - Meaning Representations from Trajectories in Autoregressive Models [106.63181745054571]
入力テキストを拡張可能なすべてのトラジェクトリの分布を考慮し,自己回帰言語モデルから意味表現を抽出する。
この戦略はプロンプトフリーであり、微調整は必要とせず、事前訓練された自己回帰モデルにも適用できる。
我々は,大規模なモデルから得られた表現が人間のアノテーションとよく一致し,意味的類似性タスクにおける他のゼロショットおよびプロンプトフリーメソッドよりも優れており,標準埋め込みが扱えないより複雑なエンタテインメントや包含タスクの解決に使用できることを実証的に示す。
論文 参考訳(メタデータ) (2023-10-23T04:35:58Z) - Scalable Neural Symbolic Regression using Control Variables [7.725394912527969]
本稿では,制御変数を利用したスケーラブルなシンボル回帰モデルであるScaleSRを提案し,精度とスケーラビリティを両立させる。
まず、ディープニューラルネットワーク(DNN)を用いて観測データからデータジェネレータを学習する。
実験結果から,複数の変数を持つ数学的表現の発見において,提案した ScaleSR は最先端のベースラインを著しく上回ることがわかった。
論文 参考訳(メタデータ) (2023-06-07T18:30:25Z) - Symbolic Metamodels for Interpreting Black-boxes Using Primitive
Functions [15.727276506140878]
ブラックボックス機械学習モデルを解釈する1つのアプローチは、単純な解釈可能な関数を使ってモデルのグローバルな近似を見つけることである。
本研究では,解釈可能なメタモデルを見つけるための新しい手法を提案する。
論文 参考訳(メタデータ) (2023-02-09T17:30:43Z) - The data-driven physical-based equations discovery using evolutionary
approach [77.34726150561087]
与えられた観測データから数学的方程式を発見するアルゴリズムについて述べる。
このアルゴリズムは遺伝的プログラミングとスパース回帰を組み合わせたものである。
解析方程式の発見や偏微分方程式(PDE)の発見にも用いられる。
論文 参考訳(メタデータ) (2020-04-03T17:21:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。