論文の概要: Demo: A Practical Testbed for Decentralized Federated Learning on Physical Edge Devices
- arxiv url: http://arxiv.org/abs/2505.08033v1
- Date: Mon, 12 May 2025 20:00:45 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-14 20:57:54.32356
- Title: Demo: A Practical Testbed for Decentralized Federated Learning on Physical Edge Devices
- Title(参考訳): Demo: 物理的なエッジデバイス上での分散学習のための実践的テストベッド
- Authors: Chao Feng, Nicolas Huber, Alberto Huertas Celdran, Gerome Bovet, Burkhard Stiller,
- Abstract要約: フェデレートラーニング(FL)は、生データを共有せずに協調的なモデルトレーニングを可能にし、参加者のプライバシを保存する。
分散FL(DFL)は中央サーバへの依存をなくし、従来のFLパラダイムに固有の単一障害点を緩和する。
この作業はRaspberry PiやJetson Nanoといったエッジデバイスを使って物理的なテストベッドを設計し、デプロイする。
- 参考スコア(独自算出の注目度): 7.665158937084105
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Federated Learning (FL) enables collaborative model training without sharing raw data, preserving participant privacy. Decentralized FL (DFL) eliminates reliance on a central server, mitigating the single point of failure inherent in the traditional FL paradigm, while introducing deployment challenges on resource-constrained devices. To evaluate real-world applicability, this work designs and deploys a physical testbed using edge devices such as Raspberry Pi and Jetson Nano. The testbed is built upon a DFL training platform, NEBULA, and extends it with a power monitoring module to measure energy consumption during training. Experiments across multiple datasets show that model performance is influenced by the communication topology, with denser topologies leading to better outcomes in DFL settings.
- Abstract(参考訳): フェデレートラーニング(FL)は、生データを共有せずに協調的なモデルトレーニングを可能にし、参加者のプライバシを保存する。
分散FL(DFL)は、中央サーバへの依存を排除し、従来のFLパラダイムに固有の単一障害点を緩和するとともに、リソース制約のあるデバイスへのデプロイメントの課題も導入する。
現実の応用性を評価するため、Raspberry PiやJetson Nanoといったエッジデバイスを使って物理的なテストベッドを設計し、デプロイする。
テストベッドはDFLトレーニングプラットフォームであるNEBULA上に構築され、トレーニング中のエネルギー消費を測定するための電力監視モジュールで拡張されている。
複数のデータセットにわたる実験により、モデル性能は通信トポロジの影響を受けており、より密度の高いトポロジはDFL設定においてより良い結果をもたらすことが示された。
関連論文リスト
- Performance Analysis of Decentralized Federated Learning Deployments [1.7249361224827533]
これらの課題に対処するために、分散フェデレートラーニング(DFL)が導入されている。
中央サーバに頼ることなく、参加するデバイス間の直接的なコラボレーションを促進する。
本研究は、DFLモデルの収束と一般化能力に影響を与える決定的な要因について考察する。
論文 参考訳(メタデータ) (2025-03-14T19:37:13Z) - Decentralized Personalized Federated Learning based on a Conditional Sparse-to-Sparser Scheme [5.5058010121503]
分散連邦学習(DFL)は、その堅牢性と集中的調整の回避によって人気を博している。
本稿では, DA-DPFL という新しいテクスチャパース・ツー・スパーサー・トレーニング手法を提案する。
実験の結果, DA-DPFLはDFLのベースラインの精度を大幅に上回り, エネルギーコストの最大5ドル削減を実現していることがわかった。
論文 参考訳(メタデータ) (2024-04-24T16:03:34Z) - Semi-Federated Learning: Convergence Analysis and Optimization of A
Hybrid Learning Framework [70.83511997272457]
本稿では,ベースステーション(BS)とデバイスの両方を活用するセミフェデレーション学習(SemiFL)パラダイムを提案し,中央集権学習(CL)とFLのハイブリッド実装を提案する。
我々はこの難解な問題を解くための2段階のアルゴリズムを提案し、ビームフォーマに閉形式解を提供する。
論文 参考訳(メタデータ) (2023-10-04T03:32:39Z) - Multi-Edge Server-Assisted Dynamic Federated Learning with an Optimized
Floating Aggregation Point [51.47520726446029]
協調エッジ学習(CE-FL)は、分散機械学習アーキテクチャである。
CE-FLの過程をモデル化し,分析訓練を行った。
実世界のテストベッドから収集したデータを用いて,本フレームワークの有効性を示す。
論文 参考訳(メタデータ) (2022-03-26T00:41:57Z) - Exploring Deep Reinforcement Learning-Assisted Federated Learning for
Online Resource Allocation in EdgeIoT [53.68792408315411]
フェデレートラーニング(FL)は、モバイルエッジコンピューティングベースのInternet of Thing(EdgeIoT)における盗聴攻撃からデータトレーニングプライバシを保護するために、ますます検討されている。
本研究では,連続領域における最適精度とエネルギー収支を達成するために,FLDLT3フレームワークを提案する。
その結果、FL-DLT3は100回未満の高速収束を実現し、FLの精度-エネルギー消費比は既存の最先端ベンチマークと比較して51.8%向上した。
論文 参考訳(メタデータ) (2022-02-15T13:36:15Z) - On-the-fly Resource-Aware Model Aggregation for Federated Learning in
Heterogeneous Edge [15.932747809197517]
エッジコンピューティングは、フレキシブルでセキュアでパフォーマンスの良い特性のおかげで、モバイルとワイヤレスネットワークの世界に革命をもたらした。
本稿では,中央集約サーバを空飛ぶマスタに置き換えるための戦略を詳細に検討する。
本研究は,EdgeAIテストベッドおよび実5Gネットワーク上で実施した測定結果から,空飛ぶマスターFLフレームワークを用いたランタイムの大幅な削減効果を示した。
論文 参考訳(メタデータ) (2021-12-21T19:04:42Z) - Unit-Modulus Wireless Federated Learning Via Penalty Alternating
Minimization [64.76619508293966]
Wireless Federated Learning(FL)は、分散データセットから無線通信を介してグローバルパラメトリックモデルをトレーニングする、新興機械学習パラダイムである。
本稿では、ローカルモデルパラメータをアップロードし、無線通信を介してグローバルモデルパラメータを算出する無線FLフレームワークを提案する。
論文 参考訳(メタデータ) (2021-08-31T08:19:54Z) - Mobility-Aware Cluster Federated Learning in Hierarchical Wireless
Networks [81.83990083088345]
我々は,無線ネットワークにおける階層型フェデレーション学習(HFL)アルゴリズムを特徴付ける理論モデルを開発した。
分析の結果,HFLの学習性能は,ハイモービル利用者の学習能力が著しく低下していることが判明した。
これらの問題を回避するため,我々はMACFLアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-08-20T10:46:58Z) - Wireless Communications for Collaborative Federated Learning [160.82696473996566]
IoT(Internet of Things)デバイスは、収集したデータを中央のコントローラに送信することができず、機械学習モデルをトレーニングすることができる。
GoogleのセミナルFLアルゴリズムでは、すべてのデバイスを中央コントローラに直接接続する必要がある。
本稿では,コラボレーティブFL(CFL)と呼ばれる新しいFLフレームワークを提案する。
論文 参考訳(メタデータ) (2020-06-03T20:00:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。