Doubly Robust Fusion of Many Treatments for Policy Learning
- URL: http://arxiv.org/abs/2505.08092v2
- Date: Sat, 24 May 2025 03:38:17 GMT
- Title: Doubly Robust Fusion of Many Treatments for Policy Learning
- Authors: Ke Zhu, Jianing Chu, Ilya Lipkovich, Wenyu Ye, Shu Yang,
- Abstract summary: We propose a calibration-weighted treatment fusion procedure that robustly balances covariates across treatment groups.<n>We establish theoretical guarantees, including consistency, the oracle property of treatment fusion, and regret bounds.<n>We illustrate the practical utility of our method using a nationwide electronic health record-derived de-identified database.
- Score: 7.943530359935207
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Individualized treatment rules/recommendations (ITRs) aim to improve patient outcomes by tailoring treatments to the characteristics of each individual. However, when there are many treatment groups, existing methods face significant challenges due to data sparsity within treatment groups and highly unbalanced covariate distributions across groups. To address these challenges, we propose a novel calibration-weighted treatment fusion procedure that robustly balances covariates across treatment groups and fuses similar treatments using a penalized working model. The fusion procedure ensures the recovery of latent treatment group structures when either the calibration model or the outcome model is correctly specified. In the fused treatment space, practitioners can seamlessly apply state-of-the-art ITR learning methods with the flexibility to utilize a subset of covariates, thereby achieving robustness while addressing practical concerns such as fairness. We establish theoretical guarantees, including consistency, the oracle property of treatment fusion, and regret bounds when integrated with multi-armed ITR learning methods such as policy trees. Simulation studies show superior group recovery and policy value compared to existing approaches. We illustrate the practical utility of our method using a nationwide electronic health record-derived de-identified database containing data from patients with Chronic Lymphocytic Leukemia and Small Lymphocytic Lymphoma.
Related papers
- Towards Regulatory-Confirmed Adaptive Clinical Trials: Machine Learning Opportunities and Solutions [59.28853595868749]
We introduce two new objectives for future clinical trials that integrate regulatory constraints and treatment policy value for both the entire population and under-served populations.<n>We formulate Randomize First Augment Next (RFAN), a new framework for designing Phase III clinical trials.<n>Our framework consists of a standard randomized component followed by an adaptive one, jointly meant to efficiently and safely acquire and assign patients into treatment arms during the trial.
arXiv Detail & Related papers (2025-03-12T10:17:54Z) - Comparison of Methods that Combine Multiple Randomized Trials to
Estimate Heterogeneous Treatment Effects [0.1398098625978622]
Leveraging multiple randomized controlled trials allows for the combination of datasets with unconfounded treatment assignment.
This paper discusses several non-parametric approaches for estimating heterogeneous treatment effects using data from multiple trials.
arXiv Detail & Related papers (2023-03-28T20:43:00Z) - Meta-analysis of individualized treatment rules via sign-coherency [3.432284729311483]
We develop a method for individual-level meta-analysis of ITRs, which jointly learns site-specific ITRs.
We also develop an adaptive procedure for model tuning, using information criteria tailored to the ITR learning problem.
arXiv Detail & Related papers (2022-11-28T15:55:55Z) - Benchmarking Heterogeneous Treatment Effect Models through the Lens of
Interpretability [82.29775890542967]
Estimating personalized effects of treatments is a complex, yet pervasive problem.
Recent developments in the machine learning literature on heterogeneous treatment effect estimation gave rise to many sophisticated, but opaque, tools.
We use post-hoc feature importance methods to identify features that influence the model's predictions.
arXiv Detail & Related papers (2022-06-16T17:59:05Z) - Robust and Agnostic Learning of Conditional Distributional Treatment
Effects [62.44901952244514]
The conditional average treatment effect (CATE) is the best point prediction of individual causal effects.
In aggregate analyses, this is usually addressed by measuring distributional treatment effect (DTE)
We provide a new robust and model-agnostic methodology for learning the conditional DTE (CDTE) for a wide class of problems.
arXiv Detail & Related papers (2022-05-23T17:40:31Z) - Representation Learning for Integrating Multi-domain Outcomes to
Optimize Individualized Treatments [6.505217121471555]
For mental disorders, patients' underlying mental states are non-observed latent constructs which have to be inferred from observed measurements.
We propose an integrated learning framework that can simultaneously learn patients' underlying mental states and recommend optimal treatments for each individual.
arXiv Detail & Related papers (2020-10-30T20:30:31Z) - MIA-Prognosis: A Deep Learning Framework to Predict Therapy Response [58.0291320452122]
This paper aims at a unified deep learning approach to predict patient prognosis and therapy response.
We formalize the prognosis modeling as a multi-modal asynchronous time series classification task.
Our predictive model could further stratify low-risk and high-risk patients in terms of long-term survival.
arXiv Detail & Related papers (2020-10-08T15:30:17Z) - Learning Individualized Treatment Rules with Estimated Translated
Inverse Propensity Score [29.606141542532356]
In this paper, we focus on learning individualized treatment rules (ITRs) to derive a treatment policy.
In our framework, we cast ITRs learning as a contextual bandit problem and minimize the expected risk of the treatment policy.
As a long-term goal, our derived policy might eventually lead to better clinical guidelines for the administration of IV and VP.
arXiv Detail & Related papers (2020-07-02T13:13:56Z) - Predictive Modeling of ICU Healthcare-Associated Infections from
Imbalanced Data. Using Ensembles and a Clustering-Based Undersampling
Approach [55.41644538483948]
This work is focused on both the identification of risk factors and the prediction of healthcare-associated infections in intensive-care units.
The aim is to support decision making addressed at reducing the incidence rate of infections.
arXiv Detail & Related papers (2020-05-07T16:13:12Z) - DTR Bandit: Learning to Make Response-Adaptive Decisions With Low Regret [59.81290762273153]
Dynamic treatment regimes (DTRs) are personalized, adaptive, multi-stage treatment plans that adapt treatment decisions to an individual's initial features and to intermediate outcomes and features at each subsequent stage.
We propose a novel algorithm that, by carefully balancing exploration and exploitation, is guaranteed to achieve rate-optimal regret when the transition and reward models are linear.
arXiv Detail & Related papers (2020-05-06T13:03:42Z) - Estimating Counterfactual Treatment Outcomes over Time Through
Adversarially Balanced Representations [114.16762407465427]
We introduce the Counterfactual Recurrent Network (CRN) to estimate treatment effects over time.
CRN uses domain adversarial training to build balancing representations of the patient history.
We show how our model achieves lower error in estimating counterfactuals and in choosing the correct treatment and timing of treatment.
arXiv Detail & Related papers (2020-02-10T20:47:36Z) - Multicategory Angle-based Learning for Estimating Optimal Dynamic
Treatment Regimes with Censored Data [12.499787110182632]
An optimal treatment regime (DTR) consists of a sequence of decision rules in maximizing long-term benefits.
In this paper, we develop a novel angle-based approach to target the optimal DTR under a multicategory treatment framework.
Our numerical studies show that the proposed method outperforms competing methods in terms of maximizing the conditional survival function.
arXiv Detail & Related papers (2020-01-14T05:19:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.