Meta-analysis of individualized treatment rules via sign-coherency
- URL: http://arxiv.org/abs/2211.15476v1
- Date: Mon, 28 Nov 2022 15:55:55 GMT
- Title: Meta-analysis of individualized treatment rules via sign-coherency
- Authors: Jay Jojo Cheng, Jared D. Huling, Guanhua Chen
- Abstract summary: We develop a method for individual-level meta-analysis of ITRs, which jointly learns site-specific ITRs.
We also develop an adaptive procedure for model tuning, using information criteria tailored to the ITR learning problem.
- Score: 3.432284729311483
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Medical treatments tailored to a patient's baseline characteristics hold the
potential of improving patient outcomes while reducing negative side effects.
Learning individualized treatment rules (ITRs) often requires aggregation of
multiple datasets(sites); however, current ITR methodology does not take
between-site heterogeneity into account, which can hurt model generalizability
when deploying back to each site. To address this problem, we develop a method
for individual-level meta-analysis of ITRs, which jointly learns site-specific
ITRs while borrowing information about feature sign-coherency via a
scientifically-motivated directionality principle. We also develop an adaptive
procedure for model tuning, using information criteria tailored to the ITR
learning problem. We study the proposed methods through numerical experiments
to understand their performance under different levels of between-site
heterogeneity and apply the methodology to estimate ITRs in a large
multi-center database of electronic health records. This work extends several
popular methodologies for estimating ITRs (A-learning, weighted learning) to
the multiple-sites setting.
Related papers
- Meta-Learners for Partially-Identified Treatment Effects Across Multiple Environments [67.80453452949303]
Estimating the conditional average treatment effect (CATE) from observational data is relevant for many applications such as personalized medicine.
Here, we focus on the widespread setting where the observational data come from multiple environments.
We propose different model-agnostic learners (so-called meta-learners) to estimate the bounds that can be used in combination with arbitrary machine learning models.
arXiv Detail & Related papers (2024-06-04T16:31:43Z) - Improving Multiple Sclerosis Lesion Segmentation Across Clinical Sites:
A Federated Learning Approach with Noise-Resilient Training [75.40980802817349]
Deep learning models have shown promise for automatically segmenting MS lesions, but the scarcity of accurately annotated data hinders progress in this area.
We introduce a Decoupled Hard Label Correction (DHLC) strategy that considers the imbalanced distribution and fuzzy boundaries of MS lesions.
We also introduce a Centrally Enhanced Label Correction (CELC) strategy, which leverages the aggregated central model as a correction teacher for all sites.
arXiv Detail & Related papers (2023-08-31T00:36:10Z) - Efficient and robust transfer learning of optimal individualized
treatment regimes with right-censored survival data [7.308241944759317]
An individualized treatment regime (ITR) is a decision rule that assigns treatments based on patients' characteristics.
We propose a doubly robust estimator of the value function, and the optimal ITR is learned by maximizing the value function within a pre-specified class of ITRs.
We evaluate the empirical performance of the proposed method by simulation studies and a real data application of sodium bicarbonate therapy for patients with severe metabolic acidaemia.
arXiv Detail & Related papers (2023-01-13T11:47:10Z) - Pain level and pain-related behaviour classification using GRU-based
sparsely-connected RNNs [61.080598804629375]
People with chronic pain unconsciously adapt specific body movements to protect themselves from injury or additional pain.
Because there is no dedicated benchmark database to analyse this correlation, we considered one of the specific circumstances that potentially influence a person's biometrics during daily activities.
We proposed a sparsely-connected recurrent neural networks (s-RNNs) ensemble with the gated recurrent unit (GRU) that incorporates multiple autoencoders.
We conducted several experiments which indicate that the proposed method outperforms the state-of-the-art approaches in classifying both pain level and pain-related behaviour.
arXiv Detail & Related papers (2022-12-20T12:56:28Z) - Learning Optimal Dynamic Treatment Regimes Using Causal Tree Methods in
Medicine [20.401805132360654]
We develop two novel methods for learning optimal dynamic treatment regimes (DTRs)
Our methods are based on a data-driven estimation of heterogeneous treatment effects using causal tree methods.
We evaluate our proposed methods using synthetic data and then apply them to real-world data from intensive care units.
arXiv Detail & Related papers (2022-04-14T17:27:08Z) - Ambiguous Dynamic Treatment Regimes: A Reinforcement Learning Approach [0.0]
Dynamic Treatment Regimes (DTRs) are widely studied to formalize this process.
We develop Reinforcement Learning methods to efficiently learn optimal treatment regimes.
arXiv Detail & Related papers (2021-12-08T20:22:04Z) - Nonparametric Estimation of Heterogeneous Treatment Effects: From Theory
to Learning Algorithms [91.3755431537592]
We analyze four broad meta-learning strategies which rely on plug-in estimation and pseudo-outcome regression.
We highlight how this theoretical reasoning can be used to guide principled algorithm design and translate our analyses into practice.
arXiv Detail & Related papers (2021-01-26T17:11:40Z) - Adversarial Sample Enhanced Domain Adaptation: A Case Study on
Predictive Modeling with Electronic Health Records [57.75125067744978]
We propose a data augmentation method to facilitate domain adaptation.
adversarially generated samples are used during domain adaptation.
Results confirm the effectiveness of our method and the generality on different tasks.
arXiv Detail & Related papers (2021-01-13T03:20:20Z) - Learning Individualized Treatment Rules with Estimated Translated
Inverse Propensity Score [29.606141542532356]
In this paper, we focus on learning individualized treatment rules (ITRs) to derive a treatment policy.
In our framework, we cast ITRs learning as a contextual bandit problem and minimize the expected risk of the treatment policy.
As a long-term goal, our derived policy might eventually lead to better clinical guidelines for the administration of IV and VP.
arXiv Detail & Related papers (2020-07-02T13:13:56Z) - DTR Bandit: Learning to Make Response-Adaptive Decisions With Low Regret [59.81290762273153]
Dynamic treatment regimes (DTRs) are personalized, adaptive, multi-stage treatment plans that adapt treatment decisions to an individual's initial features and to intermediate outcomes and features at each subsequent stage.
We propose a novel algorithm that, by carefully balancing exploration and exploitation, is guaranteed to achieve rate-optimal regret when the transition and reward models are linear.
arXiv Detail & Related papers (2020-05-06T13:03:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.