JSover: Joint Spectrum Estimation and Multi-Material Decomposition from Single-Energy CT Projections
- URL: http://arxiv.org/abs/2505.08123v1
- Date: Mon, 12 May 2025 23:32:21 GMT
- Title: JSover: Joint Spectrum Estimation and Multi-Material Decomposition from Single-Energy CT Projections
- Authors: Qing Wu, Hongjiang Wei, Jingyi Yu, S. Kevin Zhou, Yuyao Zhang,
- Abstract summary: Multi-material decomposition (MMD) enables quantitative reconstruction of tissue compositions in the human body.<n>Traditional MMD typically requires spectral CT scanners and pre-measured X-ray energy spectra, significantly limiting clinical applicability.<n>This paper proposes JSover, a fundamentally reformulated one-step SEMMD framework that jointly reconstructs multi-material compositions and estimates the energy spectrum directly from SECT projections.
- Score: 45.14515691206885
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multi-material decomposition (MMD) enables quantitative reconstruction of tissue compositions in the human body, supporting a wide range of clinical applications. However, traditional MMD typically requires spectral CT scanners and pre-measured X-ray energy spectra, significantly limiting clinical applicability. To this end, various methods have been developed to perform MMD using conventional (i.e., single-energy, SE) CT systems, commonly referred to as SEMMD. Despite promising progress, most SEMMD methods follow a two-step image decomposition pipeline, which first reconstructs monochromatic CT images using algorithms such as FBP, and then performs decomposition on these images. The initial reconstruction step, however, neglects the energy-dependent attenuation of human tissues, introducing severe nonlinear beam hardening artifacts and noise into the subsequent decomposition. This paper proposes JSover, a fundamentally reformulated one-step SEMMD framework that jointly reconstructs multi-material compositions and estimates the energy spectrum directly from SECT projections. By explicitly incorporating physics-informed spectral priors into the SEMMD process, JSover accurately simulates a virtual spectral CT system from SE acquisitions, thereby improving the reliability and accuracy of decomposition. Furthermore, we introduce implicit neural representation (INR) as an unsupervised deep learning solver for representing the underlying material maps. The inductive bias of INR toward continuous image patterns constrains the solution space and further enhances estimation quality. Extensive experiments on both simulated and real CT datasets show that JSover outperforms state-of-the-art SEMMD methods in accuracy and computational efficiency.
Related papers
- Direct Dual-Energy CT Material Decomposition using Model-based Denoising Diffusion Model [105.95160543743984]
We propose a deep learning procedure called Dual-Energy Decomposition Model-based Diffusion (DEcomp-MoD) for quantitative material decomposition.<n>We show that DEcomp-MoD outperform state-of-the-art unsupervised score-based model and supervised deep learning networks.
arXiv Detail & Related papers (2025-07-24T01:00:06Z) - A Low-dose CT Reconstruction Network Based on TV-regularized OSEM Algorithm [10.204918070701211]
Low-dose computed tomography (LDCT) offers significant advantages in reducing the potential harm to human bodies.
By utilizing the expectation (EM) algorithm, statistical priors could be combined with artificial priors to improve LDCT reconstruction quality.
In this paper, we propose to integrate TV regularization into the M''-step of the EM algorithm, thus achieving effective and efficient regularization.
arXiv Detail & Related papers (2024-08-25T13:31:53Z) - End-to-End Model-based Deep Learning for Dual-Energy Computed Tomography Material Decomposition [53.14236375171593]
We propose a deep learning procedure called End-to-End Material Decomposition (E2E-DEcomp) for quantitative material decomposition.
We show the effectiveness of the proposed direct E2E-DEcomp method on the AAPM spectral CT dataset.
arXiv Detail & Related papers (2024-06-01T16:20:59Z) - CT Material Decomposition using Spectral Diffusion Posterior Sampling [3.8673630752805446]
We introduce a new deep learning approach based on diffusion posterior sampling (DPS) to perform material decomposition from spectral CT measurements.
A faster and more stable variant is proposed that uses a jumpstarted process to reduce the number of time steps required in the reverse process.
The results demonstrate the potential of JSDPS for providing relatively fast and accurate material decomposition based on spectral CT data.
arXiv Detail & Related papers (2024-02-05T19:35:57Z) - Cross-domain Denoising for Low-dose Multi-frame Spiral Computed Tomography [20.463308418655526]
X-ray exposure raises concerns about potential health risks such as cancer.
The desire for lower radiation doses has driven researchers to improve reconstruction quality.
This paper proposes a two-stage method for the commercially available multi-slice spiral CT scanners.
arXiv Detail & Related papers (2023-04-21T09:30:22Z) - DDMM-Synth: A Denoising Diffusion Model for Cross-modal Medical Image
Synthesis with Sparse-view Measurement Embedding [7.6849475214826315]
We propose a novel framework called DDMM- Synth for medical image synthesis.
It combines an MRI-guided diffusion model with a new CT measurement embedding reverse sampling scheme.
It can adjust the projection number of CT a posteriori for a particular clinical application and its modified version can even improve the results significantly for noisy cases.
arXiv Detail & Related papers (2023-03-28T07:13:11Z) - Model-Guided Multi-Contrast Deep Unfolding Network for MRI
Super-resolution Reconstruction [68.80715727288514]
We show how to unfold an iterative MGDUN algorithm into a novel model-guided deep unfolding network by taking the MRI observation matrix.
In this paper, we propose a novel Model-Guided interpretable Deep Unfolding Network (MGDUN) for medical image SR reconstruction.
arXiv Detail & Related papers (2022-09-15T03:58:30Z) - Multi-Channel Convolutional Analysis Operator Learning for Dual-Energy
CT Reconstruction [108.06731611196291]
We develop a multi-channel convolutional analysis operator learning (MCAOL) method to exploit common spatial features within attenuation images at different energies.
We propose an optimization method which jointly reconstructs the attenuation images at low and high energies with a mixed norm regularization on the sparse features.
arXiv Detail & Related papers (2022-03-10T14:22:54Z) - Regularization by Denoising Sub-sampled Newton Method for Spectral CT
Multi-Material Decomposition [78.37855832568569]
We propose to solve a model-based maximum-a-posterior problem to reconstruct multi-materials images with application to spectral CT.
In particular, we propose to solve a regularized optimization problem based on a plug-in image-denoising function.
We show numerical and experimental results for spectral CT materials decomposition.
arXiv Detail & Related papers (2021-03-25T15:20:10Z) - Hyperspectral-Multispectral Image Fusion with Weighted LASSO [68.04032419397677]
We propose an approach for fusing hyperspectral and multispectral images to provide high-quality hyperspectral output.
We demonstrate that the proposed sparse fusion and reconstruction provides quantitatively superior results when compared to existing methods on publicly available images.
arXiv Detail & Related papers (2020-03-15T23:07:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.