論文の概要: ALOHA: Empowering Multilingual Agent for University Orientation with Hierarchical Retrieval
- arxiv url: http://arxiv.org/abs/2505.08130v1
- Date: Tue, 13 May 2025 00:01:03 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-14 20:57:54.371993
- Title: ALOHA: Empowering Multilingual Agent for University Orientation with Hierarchical Retrieval
- Title(参考訳): ALOHA:階層的検索による大学指向のための多言語エージェント
- Authors: Mingxu Tao, Bowen Tang, Mingxuan Ma, Yining Zhang, Hourun Li, Feifan Wen, Hao Ma, Jia Yang,
- Abstract要約: 大学指向の階層的検索により強化された多言語エージェントであるALOHAを紹介する。
システムは配備され、12,000人以上のサービスを提供している。
- 参考スコア(独自算出の注目度): 7.016945185385475
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The rise of Large Language Models~(LLMs) revolutionizes information retrieval, allowing users to obtain required answers through complex instructions within conversations. However, publicly available services remain inadequate in addressing the needs of faculty and students to search campus-specific information. It is primarily due to the LLM's lack of domain-specific knowledge and the limitation of search engines in supporting multilingual and timely scenarios. To tackle these challenges, we introduce ALOHA, a multilingual agent enhanced by hierarchical retrieval for university orientation. We also integrate external APIs into the front-end interface to provide interactive service. The human evaluation and case study show our proposed system has strong capabilities to yield correct, timely, and user-friendly responses to the queries in multiple languages, surpassing commercial chatbots and search engines. The system has been deployed and has provided service for more than 12,000 people.
- Abstract(参考訳): 大規模言語モデル~(LLM)の台頭は情報検索に革命をもたらし、ユーザーは会話の中で複雑な指示を通じて必要な回答を得ることができる。
しかし、教員や学生がキャンパス固有の情報を検索する必要性に対処する上で、公開されているサービスは依然として不十分である。
LLMのドメイン固有の知識の欠如と、多言語とタイムリーなシナリオをサポートする検索エンジンの制限が主な原因である。
これらの課題に対処するために,大学向きの階層的検索により強化された多言語エージェントであるALOHAを導入する。
また、外部APIをフロントエンドインターフェースに統合して、インタラクティブなサービスを提供しています。
人的評価とケーススタディにより,提案システムには,複数の言語でのクエリに対する正確でタイムリーで,ユーザフレンドリな応答が,商用チャットボットや検索エンジンよりも優れていることが示された。
システムは配備され、12,000人以上のサービスを提供している。
関連論文リスト
- Query Understanding in LLM-based Conversational Information Seeking [12.823070040084943]
大規模言語モデル(LLM)は、ニュアンス言語を解釈し、動的に適応することによって、このプロセスを強化する。
本チュートリアルでは,LLMに基づくCISシステムにおけるクエリ理解の高度化を図る。
論文 参考訳(メタデータ) (2025-04-08T18:04:43Z) - mFollowIR: a Multilingual Benchmark for Instruction Following in Retrieval [61.17793165194077]
本稿では,検索モデルにおける命令追従能力のベンチマークであるmFollowIRを紹介する。
本稿では,多言語 (XX-XX) と多言語 (En-XX) のパフォーマンスについて述べる。
英語をベースとした学習者による多言語間性能は高いが,多言語設定では顕著な性能低下がみられた。
論文 参考訳(メタデータ) (2025-01-31T16:24:46Z) - A Survey of Conversational Search [44.09402706387407]
会話検索における最近の進歩と今後の方向性について検討する。
これらのシステムの拡張において,大規模言語モデル(LLM)の統合を強調した。
我々は,現実のアプリケーションに対する洞察と,現在の対話型検索システムの堅牢な評価を提供する。
論文 参考訳(メタデータ) (2024-10-21T01:54:46Z) - MST5 -- Multilingual Question Answering over Knowledge Graphs [1.6470999044938401]
知識グラフ質問回答(KGQA)は、自然言語を用いたグラフベースモデルに格納された膨大な知識のクエリを単純化する。
既存の多言語KGQAシステムは、英語システムに匹敵する性能を達成するための課題に直面している。
本稿では,言語コンテキストとエンティティ情報を言語モデルの処理パイプラインに直接組み込むことで,多言語KGQAシステムを強化するための簡易なアプローチを提案する。
論文 参考訳(メタデータ) (2024-07-08T15:37:51Z) - CLARINET: Augmenting Language Models to Ask Clarification Questions for Retrieval [52.134133938779776]
CLARINETは,回答が正しい候補の確実性を最大化する質問を選択することで,情報的明確化を問うシステムである。
提案手法は,大規模言語モデル(LLM)を検索分布の条件付きで拡張し,各ターンで真の候補のランクを最大化する問題を生成する。
論文 参考訳(メタデータ) (2024-04-28T18:21:31Z) - DIALIGHT: Lightweight Multilingual Development and Evaluation of
Task-Oriented Dialogue Systems with Large Language Models [76.79929883963275]
DIALIGHTは多言語タスク指向対話(ToD)システムの開発と評価のためのツールキットである。
ローカル発話レベルとグローバル対話レベルの両方において、人間のきめ細かい評価のためのセキュアでユーザフレンドリーなWebインターフェースを備えている。
評価の結果, PLMの微調整により精度とコヒーレンスが向上する一方, LLMベースのシステムは多様で類似した応答を生成するのに優れていた。
論文 参考訳(メタデータ) (2024-01-04T11:27:48Z) - Interpreting User Requests in the Context of Natural Language Standing
Instructions [89.12540932734476]
我々は17のドメインにまたがる2.4K以上の対話からなる言語とプログラムのデータセットであるNLSIを開発した。
NLSIの鍵となる課題は、ある対話に適用可能なスタンディング命令のサブセットを特定することである。
論文 参考訳(メタデータ) (2023-11-16T11:19:26Z) - Cache & Distil: Optimising API Calls to Large Language Models [82.32065572907125]
ジェネレーティブAIツールの大規模デプロイは、ユーザクエリをフルフィルするために、LLM(Large Language Model)に対する高価なAPI呼び出しに依存することが多い。
これらの呼び出しの頻度を縮めるために、より小さな言語モデル(学生)を用いることができる。
この学生は、ユーザー要求の増加に独立して対処する能力が徐々に向上する。
論文 参考訳(メタデータ) (2023-10-20T15:01:55Z) - Query Understanding in the Age of Large Language Models [6.630482733703617]
大規模言語モデル(LLM)を用いた対話型クエリ書き換えのための汎用フレームワークについて述べる。
我々のフレームワークの重要な側面は、自然言語で検索エンジンによって機械の意図を完全に指定できるリライタの能力である。
この対話型クエリ理解フレームワークに対するオープンな質問とともに、最初の実験を背景としたコンセプトを詳述する。
論文 参考訳(メタデータ) (2023-06-28T08:24:14Z) - Asking for Knowledge: Training RL Agents to Query External Knowledge
Using Language [121.56329458876655]
グリッドワールドベースのQ-BabyAIとテキストベースのQ-TextWorldの2つの新しい環境を紹介した。
本稿では,意味のある知識を問うための言語コマンドを生成する「知識の探索(AFK)」エージェントを提案する。
論文 参考訳(メタデータ) (2022-05-12T14:20:31Z) - Efficient Deployment of Conversational Natural Language Interfaces over
Databases [45.52672694140881]
本稿では、自然言語からクエリ言語への機械学習モデルを開発するためのトレーニングデータセット収集を高速化する新しい手法を提案する。
本システムでは,対話セッションを定義した対話型多言語データを生成することができる。
論文 参考訳(メタデータ) (2020-05-31T19:16:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。