論文の概要: Query Understanding in LLM-based Conversational Information Seeking
- arxiv url: http://arxiv.org/abs/2504.06356v1
- Date: Tue, 08 Apr 2025 18:04:43 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-10 13:06:50.107816
- Title: Query Understanding in LLM-based Conversational Information Seeking
- Title(参考訳): LLMを用いた会話情報検索におけるクエリ理解
- Authors: Yifei Yuan, Zahra Abbasiantaeb, Yang Deng, Mohammad Aliannejadi,
- Abstract要約: 大規模言語モデル(LLM)は、ニュアンス言語を解釈し、動的に適応することによって、このプロセスを強化する。
本チュートリアルでは,LLMに基づくCISシステムにおけるクエリ理解の高度化を図る。
- 参考スコア(独自算出の注目度): 12.823070040084943
- License:
- Abstract: Query understanding in Conversational Information Seeking (CIS) involves accurately interpreting user intent through context-aware interactions. This includes resolving ambiguities, refining queries, and adapting to evolving information needs. Large Language Models (LLMs) enhance this process by interpreting nuanced language and adapting dynamically, improving the relevance and precision of search results in real-time. In this tutorial, we explore advanced techniques to enhance query understanding in LLM-based CIS systems. We delve into LLM-driven methods for developing robust evaluation metrics to assess query understanding quality in multi-turn interactions, strategies for building more interactive systems, and applications like proactive query management and query reformulation. We also discuss key challenges in integrating LLMs for query understanding in conversational search systems and outline future research directions. Our goal is to deepen the audience's understanding of LLM-based conversational query understanding and inspire discussions to drive ongoing advancements in this field.
- Abstract(参考訳): CIS(Conversational Information Seeking)におけるクエリ理解は、コンテキスト認識インタラクションを通じてユーザの意図を正確に解釈する。
これには曖昧さの解決、クエリの精細化、情報ニーズの進化への適応などが含まれる。
大規模言語モデル(LLM)は、ニュアンス言語を解釈し、動的に適応することにより、このプロセスを強化し、検索結果の妥当性と精度をリアルタイムで向上する。
本チュートリアルでは,LLMに基づくCISシステムにおけるクエリ理解を強化するための高度な手法について検討する。
マルチターンインタラクションにおける問合せ理解品質の評価,よりインタラクティブなシステム構築戦略,積極的な問合せ管理や問合せ改定などのアプリケーションなど,LCM駆動によるロバストな評価指標の開発について検討する。
また,対話型検索システムにおける問合せ理解のためのLLMの統合に関する重要な課題についても論じ,今後の研究の方向性について概説する。
我々のゴールは、LLMに基づく会話クエリ理解に対する聴衆の理解を深め、この分野における継続的な進歩を促すための議論を促すことである。
関連論文リスト
- Towards Boosting LLMs-driven Relevance Modeling with Progressive Retrieved Behavior-augmented Prompting [23.61061000692023]
本研究では,検索ログに記録されたユーザインタラクションを活用して,ユーザの暗黙の検索意図に対する洞察を得ることを提案する。
ProRBPは,探索シナリオ指向の知識を大規模言語モデルと統合するための,プログレッシブ検索行動拡張型プロンプトフレームワークである。
論文 参考訳(メタデータ) (2024-08-18T11:07:38Z) - When Search Engine Services meet Large Language Models: Visions and Challenges [53.32948540004658]
本稿では,大規模言語モデルと検索エンジンの統合が,両者の相互に利益をもたらすかどうかを詳細に検討する。
LLM(Search4LLM)の改良と,LLM(LLM4Search)を用いた検索エンジン機能の向上という,2つの主要な領域に注目した。
論文 参考訳(メタデータ) (2024-06-28T03:52:13Z) - Can Long-Context Language Models Subsume Retrieval, RAG, SQL, and More? [54.667202878390526]
長文言語モデル(LCLM)は、従来、検索システムやデータベースといった外部ツールに依存していたタスクへのアプローチに革命をもたらす可能性がある。
実世界のタスクのベンチマークであるLOFTを導入し、文脈内検索と推論においてLCLMの性能を評価するために設計された数百万のトークンを出力する。
以上の結果からLCLMは,これらのタスクを明示的に訓練したことがないにも関わらず,最先端の検索システムやRAGシステムと競合する驚くべき能力を示した。
論文 参考訳(メタデータ) (2024-06-19T00:28:58Z) - Redefining Information Retrieval of Structured Database via Large Language Models [10.117751707641416]
本稿では,ChatLRと呼ばれる新しい検索拡張フレームワークを提案する。
主に、Large Language Models (LLM) の強力な意味理解能力を用いて、正確かつ簡潔な情報検索を実現する。
実験の結果、ChatLRがユーザクエリに対処する効果を示し、全体の情報検索精度は98.8%を超えた。
論文 参考訳(メタデータ) (2024-05-09T02:37:53Z) - PerkwE_COQA: Enhanced Persian Conversational Question Answering by combining contextual keyword extraction with Large Language Models [0.8057006406834466]
本稿では,ペルシア語対話型質問応答システム(CQA)の性能向上のための新しい手法を提案する。
LLM(Large Language Models)と文脈キーワード抽出の長所を組み合わせる。
提案手法は,暗黙的な質問を効果的に処理し,文脈に関連のある回答を提示し,会話の文脈に大きく依存する複雑な質問に対処する。
論文 参考訳(メタデータ) (2024-04-08T11:14:58Z) - Context Matters: Pushing the Boundaries of Open-Ended Answer Generation with Graph-Structured Knowledge Context [4.1229332722825]
本稿では,知識グラフに基づく拡張と合わせて,グラフ駆動型コンテキスト検索を組み合わせた新しいフレームワークを提案する。
我々は,様々なパラメータサイズを持つ大規模言語モデル(LLM)の実験を行い,知識の基盤化能力を評価し,オープンな質問に対する回答の事実的正確性を決定する。
われわれの方法であるGraphContextGenは、テキストベースの検索システムよりも一貫して優れており、その堅牢性と多くのユースケースへの適応性を実証している。
論文 参考訳(メタデータ) (2024-01-23T11:25:34Z) - LMRL Gym: Benchmarks for Multi-Turn Reinforcement Learning with Language
Models [56.25156596019168]
本稿では,LMRL-Gymベンチマークを用いて,大規模言語モデル(LLM)のマルチターンRLの評価を行う。
我々のベンチマークは8つの異なる言語タスクで構成されており、複数ラウンドの言語相互作用が必要であり、オープンエンド対話やテキストゲームにおける様々なタスクをカバーする。
論文 参考訳(メタデータ) (2023-11-30T03:59:31Z) - Large Language Models for Information Retrieval: A Survey [58.30439850203101]
情報検索は、項ベースの手法から高度なニューラルモデルとの統合へと進化してきた。
近年の研究では、大規模言語モデル(LLM)を活用してIRシステムの改善が試みられている。
LLMとIRシステムの合流点を探索し、クエリリライト、リトリバー、リランカー、リーダーといった重要な側面を含む。
論文 参考訳(メタデータ) (2023-08-14T12:47:22Z) - Query Understanding in the Age of Large Language Models [6.630482733703617]
大規模言語モデル(LLM)を用いた対話型クエリ書き換えのための汎用フレームワークについて述べる。
我々のフレームワークの重要な側面は、自然言語で検索エンジンによって機械の意図を完全に指定できるリライタの能力である。
この対話型クエリ理解フレームワークに対するオープンな質問とともに、最初の実験を背景としたコンセプトを詳述する。
論文 参考訳(メタデータ) (2023-06-28T08:24:14Z) - Synergistic Interplay between Search and Large Language Models for
Information Retrieval [141.18083677333848]
InteRにより、RMはLLM生成した知識コレクションを使用してクエリの知識を拡張することができる。
InteRは、最先端手法と比較して総合的に優れたゼロショット検索性能を実現する。
論文 参考訳(メタデータ) (2023-05-12T11:58:15Z) - Search-in-the-Chain: Interactively Enhancing Large Language Models with
Search for Knowledge-intensive Tasks [121.74957524305283]
本稿では、情報検索(IR)とLarge Language Model(LLM)のインタラクションのための、textbfSearch-in-the-Chain(SearChain)という新しいフレームワークを提案する。
実験の結果、SearChainは複雑な知識集約タスクにおける最先端のベースラインを上回っていることがわかった。
論文 参考訳(メタデータ) (2023-04-28T10:15:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。