論文の概要: Foundation Models Knowledge Distillation For Battery Capacity Degradation Forecast
- arxiv url: http://arxiv.org/abs/2505.08151v1
- Date: Tue, 13 May 2025 01:03:35 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-14 20:57:54.383994
- Title: Foundation Models Knowledge Distillation For Battery Capacity Degradation Forecast
- Title(参考訳): 電池容量劣化予測のための基礎モデルによる知識蒸留
- Authors: Joey Chan, Zhen Chen, Ershun Pan,
- Abstract要約: 本研究は,時系列基礎モデルの劣化を考慮した微調整戦略を提案する。
リリースしたCycleLife-SJTUIEデータセットの検証は、微調整されたバッテリタイマーが強力なゼロショットの一般化能力を持っていることを示している。
- 参考スコア(独自算出の注目度): 3.676274773831396
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurate estimation of lithium-ion battery capacity degradation is critical for enhancing the reliability and safety of battery operations. Traditional expert models, tailored to specific scenarios, provide isolated estimations. With the rapid advancement of data-driven techniques, a series of general-purpose time-series foundation models have been developed. However, foundation models specifically designed for battery capacity degradation remain largely unexplored. To enable zero-shot generalization in battery degradation prediction using large model technology, this study proposes a degradation-aware fine-tuning strategy for time-series foundation models. We apply this strategy to fine-tune the Timer model on approximately 10 GB of open-source battery charge discharge data. Validation on our released CycleLife-SJTUIE dataset demonstrates that the fine-tuned Battery-Timer possesses strong zero-shot generalization capability in capacity degradation forecasting. To address the computational challenges of deploying large models, we further propose a knowledge distillation framework that transfers the knowledge of pre-trained foundation models into compact expert models. Distillation results across several state-of-the-art time-series expert models confirm that foundation model knowledge significantly improves the multi-condition generalization of expert models.
- Abstract(参考訳): リチウムイオン電池のキャパシティ劣化の正確な推定は、バッテリ操作の信頼性と安全性を高めるために重要である。
特定のシナリオに合わせた従来のエキスパートモデルは、独立した見積もりを提供する。
データ駆動技術の急速な進歩により、一連の汎用時系列基盤モデルが開発されている。
しかし、バッテリ容量の劣化に特化して設計された基礎モデルはほとんど未検討のままである。
本研究では,大容量モデルを用いた電池劣化予測におけるゼロショット一般化を実現するため,時系列基礎モデルの劣化を考慮した微調整戦略を提案する。
約10GBのオープンソースの蓄電池放電データに基づいて,Timerモデルを微調整する。
リリースしたCycleLife-SJTUIEデータセットの検証は、微調整されたバッテリタイマーがキャパシティ劣化予測において強力なゼロショット一般化能力を有していることを示している。
大規模モデルをデプロイする際の計算課題に対処するために,事前学習した基礎モデルの知識をコンパクトなエキスパートモデルに伝達する知識蒸留フレームワークを提案する。
いくつかの最先端の時系列エキスパートモデルの蒸留結果から、基礎モデルの知識がエキスパートモデルのマルチ条件一般化を著しく改善することを確認した。
関連論文リスト
- Survival Analysis with Machine Learning for Predicting Li-ion Battery Remaining Useful Life [4.6033243214188415]
本研究では、生存データ再構成、生存モデル学習、生存確率推定を統合したハイブリッド生存分析フレームワークを提案する。
提案手法は, 電池電圧時系列を経路シグネチャを用いた時間から障害データに変換する。
トヨタのバッテリとNASAのバッテリデータセットを用いて行った実験は,我々のアプローチの有効性を実証した。
論文 参考訳(メタデータ) (2025-03-17T02:49:34Z) - TimeRAF: Retrieval-Augmented Foundation model for Zero-shot Time Series Forecasting [59.702504386429126]
TimeRAFは検索拡張技術によるゼロショット時系列予測を強化する検索拡張予測モデルである。
TimeRAFは、エンド・ツー・エンドの学習可能なレトリバーを使用して、知識ベースから貴重な情報を抽出する。
論文 参考訳(メタデータ) (2024-12-30T09:06:47Z) - Predictive Churn with the Set of Good Models [61.00058053669447]
本稿では,予測的不整合という2つの無関係な概念の関連性について考察する。
予測多重性(英: predictive multiplicity)は、個々のサンプルに対して矛盾する予測を生成するモデルである。
2つ目の概念である予測チャーン(英: predictive churn)は、モデル更新前後の個々の予測の違いを調べるものである。
論文 参考訳(メタデータ) (2024-02-12T16:15:25Z) - Lag-Llama: Towards Foundation Models for Probabilistic Time Series
Forecasting [54.04430089029033]
本稿では,デコーダのみの変換器アーキテクチャに基づく時系列予測のための汎用基礎モデルであるLag-Llamaを提案する。
Lag-Llamaは、複数のドメインからの多様な時系列データの大規模なコーパスで事前訓練され、強力なゼロショット一般化能力を示す。
このような未確認データセットの比較的小さな部分で微調整を行うと、Lag-Llamaは最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2023-10-12T12:29:32Z) - Dynaformer: A Deep Learning Model for Ageing-aware Battery Discharge
Prediction [2.670887944566458]
本稿では,少数の電圧/電流サンプルから同時に老化状態を推定できるトランスフォーマーに基づく新しいディープラーニングアーキテクチャを提案する。
実験の結果, 学習モデルは様々な複雑さの入力電流分布に有効であり, 広範囲の劣化レベルに対して堅牢であることがわかった。
論文 参考訳(メタデータ) (2022-06-01T15:31:06Z) - Hybrid physics-based and data-driven modeling with calibrated
uncertainty for lithium-ion battery degradation diagnosis and prognosis [6.7143928677892335]
リチウムイオン電池(LIB)は今後数十年で電化を促進する鍵となる。
LIB劣化の不十分な理解は、バッテリーの耐久性と安全性を制限する重要なボトルネックである。
本稿では,オンライン診断とバッテリー劣化の診断のためのハイブリッド物理とデータ駆動モデリングを提案する。
論文 参考訳(メタデータ) (2021-10-25T11:14:12Z) - Back2Future: Leveraging Backfill Dynamics for Improving Real-time
Predictions in Future [73.03458424369657]
公衆衛生におけるリアルタイム予測では、データ収集は簡単で要求の多いタスクである。
過去の文献では「バックフィル」現象とそのモデル性能への影響についてはほとんど研究されていない。
我々は、与えられたモデルの予測をリアルタイムで洗練することを目的とした、新しい問題とニューラルネットワークフレームワークBack2Futureを定式化する。
論文 参考訳(メタデータ) (2021-06-08T14:48:20Z) - Universal Battery Performance and Degradation Model for Electric
Aircraft [52.77024349608834]
電動垂直離着陸機(eVTOL)の設計、解析、運用には、Liイオン電池の性能の迅速かつ正確な予測が必要である。
我々は,eVTOLのデューティサイクルに特有の電池性能と熱的挙動のデータセットを生成する。
このデータセットを用いて,物理インフォームド機械学習を用いた電池性能・劣化モデル(Cellfit)を開発した。
論文 参考訳(メタデータ) (2020-07-06T16:10:54Z) - Model Reuse with Reduced Kernel Mean Embedding Specification [70.044322798187]
現在のアプリケーションで有用なモデルを見つけるための2段階のフレームワークを提案する。
アップロードフェーズでは、モデルがプールにアップロードされている場合、モデルの仕様としてカーネル平均埋め込み(RKME)を縮小する。
デプロイフェーズでは、RKME仕様の値に基づいて、現在のタスクと事前訓練されたモデルの関連性を測定する。
論文 参考訳(メタデータ) (2020-01-20T15:15:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。