Aitomia: Your Intelligent Assistant for AI-Driven Atomistic and Quantum Chemical Simulations
- URL: http://arxiv.org/abs/2505.08195v3
- Date: Tue, 22 Jul 2025 01:10:54 GMT
- Title: Aitomia: Your Intelligent Assistant for AI-Driven Atomistic and Quantum Chemical Simulations
- Authors: Jinming Hu, Hassan Nawaz, Yuting Rui, Lijie Chi, Arif Ullah, Pavlo O. Dral,
- Abstract summary: Aitomia is a platform powered by AI to assist in performing AI-driven atomistic and quantum chemical (QC) simulations.<n>It is equipped with chatbots and AI agents to help experts and guide non-experts in setting up and running atomistic simulations.<n>Aitomia is expected to lower the barrier to performing atomistic simulations, thereby democratizing simulations and accelerating research and development in relevant fields.
- Score: 2.547250631115307
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We have developed Aitomia - a platform powered by AI to assist in performing AI-driven atomistic and quantum chemical (QC) simulations. This evolving intelligent assistant platform is equipped with chatbots and AI agents to help experts and guide non-experts in setting up and running atomistic simulations, monitoring their computational status, analyzing simulation results, and summarizing them for the user in both textual and graphical forms. We achieve these goals by exploiting large language models that leverage the versatility of our MLatom ecosystem, supporting AI-enhanced computational chemistry tasks ranging from ground-state to excited-state calculations, including geometry optimizations, thermochemistry, and spectral calculations. The multi-agent implementation enables autonomous executions of the complex computational workflows, such as the computation of the reaction enthalpies. Aitomia is the first intelligent assistant publicly accessible online on a cloud computing platform for atomistic simulations of broad scope (Aitomistic Hub at https://aitomistic.xyz). It may also be deployed locally as described at http://mlatom.com/aitomia. Aitomia is expected to lower the barrier to performing atomistic simulations, thereby democratizing simulations and accelerating research and development in relevant fields.
Related papers
- Quantum Computing and AI: Perspectives on Advanced Automation in Science and Engineering [0.0]
Recent advances in artificial intelligence (AI) and quantum computing are accelerating automation in scientific and engineering processes.<n>This perspective highlights parallels between scientific automation and established Computer-Aided Engineering (CAE) practices.
arXiv Detail & Related papers (2025-05-15T06:53:30Z) - Rapid and Automated Alloy Design with Graph Neural Network-Powered LLM-Driven Multi-Agent Systems [0.0]
A multi-agent AI model is used to automate the discovery of new metallic alloys.
We focus on the NbMoTa family of body-centered cubic (bcc) alloys, modeled using an ML-based interatomic potential.
By synergizing the predictive power of GNNs with the dynamic collaboration of LLM-based agents, the system autonomously navigates vast alloy design spaces.
arXiv Detail & Related papers (2024-10-17T17:06:26Z) - A Perspective on AI-Guided Molecular Simulations in VR: Exploring Strategies for Imitation Learning in Hyperdimensional Molecular Systems [0.7853804618032806]
Interactive molecular dynamics in virtual reality (iMD-VR) has recently been developed as a 'human-in-the-loop' strategy.
This paper explores the possibility of employing user-generated iMD-VR datasets to train AI agents via imitation learning (IL)
arXiv Detail & Related papers (2024-09-11T11:21:02Z) - A Study on Quantum Car-Parrinello Molecular Dynamics with Classical Shadows for Resource Efficient Molecular Simulation [0.24578723416255746]
Ab-initio molecular dynamics (AIMD) is a powerful tool to simulate physical movements of molecules for investigating properties of materials.
Near-term quantum computers have attracted much attentions as a possible solution to alleviate the challenge.
We build on the proposed QCPMD method and introduce the classical shadow technique to further improve resource efficiency.
arXiv Detail & Related papers (2024-06-27T00:06:23Z) - DrEureka: Language Model Guided Sim-To-Real Transfer [64.14314476811806]
Transferring policies learned in simulation to the real world is a promising strategy for acquiring robot skills at scale.
In this paper, we investigate using Large Language Models (LLMs) to automate and accelerate sim-to-real design.
Our approach is capable of solving novel robot tasks, such as quadruped balancing and walking atop a yoga ball.
arXiv Detail & Related papers (2024-06-04T04:53:05Z) - Generative AI Agent for Next-Generation MIMO Design: Fundamentals, Challenges, and Vision [76.4345564864002]
Next-generation multiple input multiple output (MIMO) is expected to be intelligent and scalable.
We propose the concept of the generative AI agent, which is capable of generating tailored and specialized contents.
We present two compelling case studies that demonstrate the effectiveness of leveraging the generative AI agent for performance analysis.
arXiv Detail & Related papers (2024-04-13T02:39:36Z) - Neuromorphic hardware for sustainable AI data centers [3.011658333753524]
Neuromorphic hardware takes inspiration from how the brain processes information.
Despite its potential, neuromorphic hardware has not found its way into commercial AI data centers.
This article aims to increase awareness of the challenges of integrating neuromorphic hardware into data centers.
arXiv Detail & Related papers (2024-02-04T15:08:50Z) - DiffuseBot: Breeding Soft Robots With Physics-Augmented Generative
Diffusion Models [102.13968267347553]
We present DiffuseBot, a physics-augmented diffusion model that generates soft robot morphologies capable of excelling in a wide spectrum of tasks.
We showcase a range of simulated and fabricated robots along with their capabilities.
arXiv Detail & Related papers (2023-11-28T18:58:48Z) - Chemist-X: Large Language Model-empowered Agent for Reaction Condition Recommendation in Chemical Synthesis [55.30328162764292]
Chemist-X is a comprehensive AI agent that automates the reaction condition optimization (RCO) task in chemical synthesis.<n>The agent uses retrieval-augmented generation (RAG) technology and AI-controlled wet-lab experiment executions.<n>Results of our automatic wet-lab experiments, achieved by fully LLM-supervised end-to-end operation with no human in the lope, prove Chemist-X's ability in self-driving laboratories.
arXiv Detail & Related papers (2023-11-16T01:21:33Z) - Physical Computing for Materials Acceleration Platforms [81.09376948478891]
We argue that the same simulation and AI tools that will accelerate the search for new materials, as part of the MAPs research program, also make possible the design of fundamentally new computing mediums.
We outline a simulation-based MAP program to design computers that use physics itself to solve optimization problems.
We expect to introduce a new era of innovative collaboration between materials researchers and computer scientists.
arXiv Detail & Related papers (2022-08-17T23:03:54Z) - Simulation Intelligence: Towards a New Generation of Scientific Methods [81.75565391122751]
"Nine Motifs of Simulation Intelligence" is a roadmap for the development and integration of the essential algorithms necessary for a merger of scientific computing, scientific simulation, and artificial intelligence.
We argue the motifs of simulation intelligence are interconnected and interdependent, much like the components within the layers of an operating system.
We believe coordinated efforts between motifs offers immense opportunity to accelerate scientific discovery.
arXiv Detail & Related papers (2021-12-06T18:45:31Z) - Edge-Cloud Polarization and Collaboration: A Comprehensive Survey [61.05059817550049]
We conduct a systematic review for both cloud and edge AI.
We are the first to set up the collaborative learning mechanism for cloud and edge modeling.
We discuss potentials and practical experiences of some on-going advanced edge AI topics.
arXiv Detail & Related papers (2021-11-11T05:58:23Z) - ChemiQ: A Chemistry Simulator for Quantum Computer [6.270568229181158]
ChemiQ is a quantum simulation tool for chemistry, designed to assist people carry out chemical research or molecular calculation on real or virtual quantum computers.
It provides services as follow: visually construct molecular structure, quickly simulate ground-state energy, scan molecular potential energy curve by distance or angle, study chemical reaction, and return calculation results graphically after analysis.
arXiv Detail & Related papers (2021-06-18T14:57:03Z) - Deep Bayesian Active Learning for Accelerating Stochastic Simulation [74.58219903138301]
Interactive Neural Process (INP) is a deep active learning framework for simulations and with active learning approaches.
For active learning, we propose a novel acquisition function, Latent Information Gain (LIG), calculated in the latent space of NP based models.
The results demonstrate STNP outperforms the baselines in the learning setting and LIG achieves the state-of-the-art for active learning.
arXiv Detail & Related papers (2021-06-05T01:31:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.