BAT: Benchmark for Auto-bidding Task
- URL: http://arxiv.org/abs/2505.08485v1
- Date: Tue, 13 May 2025 12:12:34 GMT
- Title: BAT: Benchmark for Auto-bidding Task
- Authors: Alexandra Khirianova, Ekaterina Solodneva, Andrey Pudovikov, Sergey Osokin, Egor Samosvat, Yuriy Dorn, Alexander Ledovsky, Yana Zenkova,
- Abstract summary: We present an auction benchmark encompassing the two most prevalent auction formats.<n>We implement a series of robust baselines on a novel dataset.<n>This benchmark provides a user-friendly and intuitive framework for researchers and practitioners to develop and refine innovative autobidding algorithms.
- Score: 67.56067222427946
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The optimization of bidding strategies for online advertising slot auctions presents a critical challenge across numerous digital marketplaces. A significant obstacle to the development, evaluation, and refinement of real-time autobidding algorithms is the scarcity of comprehensive datasets and standardized benchmarks. To address this deficiency, we present an auction benchmark encompassing the two most prevalent auction formats. We implement a series of robust baselines on a novel dataset, addressing the most salient Real-Time Bidding (RTB) problem domains: budget pacing uniformity and Cost Per Click (CPC) constraint optimization. This benchmark provides a user-friendly and intuitive framework for researchers and practitioners to develop and refine innovative autobidding algorithms, thereby facilitating advancements in the field of programmatic advertising. The implementation and additional resources can be accessed at the following repository (https://github.com/avito-tech/bat-autobidding-benchmark, https://doi.org/10.5281/zenodo.14794182).
Related papers
- Nash Equilibrium Constrained Auto-bidding With Bi-level Reinforcement Learning [64.2367385090879]
We propose a new formulation of the auto-bidding problem from the platform's perspective.<n>It aims to maximize the social welfare of all advertisers under the $epsilon$-NE constraint.<n>The NCB problem presents significant challenges due to its constrained bi-level structure and the typically large number of advertisers involved.
arXiv Detail & Related papers (2025-03-13T12:25:36Z) - Online Bidding under RoS Constraints without Knowing the Value [22.193658401789033]
We consider the problem of bidding in online advertising, where an advertiser aims to maximize value while adhering to budget and Return-on-Spend constraints.<n>We propose a novel Upper Confidence Bound (UCB)-style algorithm that carefully manages this trade-off.
arXiv Detail & Related papers (2025-03-05T05:25:54Z) - Learning to Bid in Non-Stationary Repeated First-Price Auctions [20.933903777434086]
First-price auctions have gained significant traction in digital advertising markets.<n> determining an optimal bidding strategy in first-price auctions is more complex.<n>We provide a minimax-optimal characterization of the dynamic regret for the class of sequences of opponents' highest bids.
arXiv Detail & Related papers (2025-01-23T03:53:27Z) - GAS: Generative Auto-bidding with Post-training Search [26.229396732360787]
We propose a flexible and practical Generative Auto-bidding scheme using post-training Search, termed GAS, to refine a base policy model's output.<n>Experiments conducted on the real-world dataset and online A/B test on the Kuaishou advertising platform demonstrate the effectiveness of GAS.
arXiv Detail & Related papers (2024-12-22T13:47:46Z) - Procurement Auctions via Approximately Optimal Submodular Optimization [53.93943270902349]
We study procurement auctions, where an auctioneer seeks to acquire services from strategic sellers with private costs.
Our goal is to design computationally efficient auctions that maximize the difference between the quality of the acquired services and the total cost of the sellers.
arXiv Detail & Related papers (2024-11-20T18:06:55Z) - Self-Steering Optimization: Autonomous Preference Optimization for Large Language Models [79.84205827056907]
We present Self-Steering Optimization ($SSO$), an algorithm that autonomously generates high-quality preference data.<n>$SSO$ employs a specialized optimization objective to build a data generator from the policy model itself, which is used to produce accurate and on-policy data.<n>Our evaluation shows that $SSO$ consistently outperforms baselines in human preference alignment and reward optimization.
arXiv Detail & Related papers (2024-10-22T16:04:03Z) - A Primal-Dual Online Learning Approach for Dynamic Pricing of Sequentially Displayed Complementary Items under Sale Constraints [54.46126953873298]
We address the problem of dynamically pricing complementary items that are sequentially displayed to customers.
Coherent pricing policies for complementary items are essential because optimizing the pricing of each item individually is ineffective.
We empirically evaluate our approach using synthetic settings randomly generated from real-world data, and compare its performance in terms of constraints violation and regret.
arXiv Detail & Related papers (2024-07-08T09:55:31Z) - Benchmarking PtO and PnO Methods in the Predictive Combinatorial Optimization Regime [59.27851754647913]
Predictive optimization is the precise modeling of many real-world applications, including energy cost-aware scheduling and budget allocation on advertising.
We develop a modular framework to benchmark 11 existing PtO/PnO methods on 8 problems, including a new industrial dataset for advertising.
Our study shows that PnO approaches are better than PtO on 7 out of 8 benchmarks, but there is no silver bullet found for the specific design choices of PnO.
arXiv Detail & Related papers (2023-11-13T13:19:34Z) - Coordinated Dynamic Bidding in Repeated Second-Price Auctions with
Budgets [17.937079224726073]
We study coordinated online bidding algorithms in repeated second-price auctions with budgets.
We propose algorithms that guarantee every client a higher utility than the best she can get under independent bidding.
arXiv Detail & Related papers (2023-06-13T11:55:04Z) - Online Learning under Budget and ROI Constraints via Weak Adaptivity [57.097119428915796]
Existing primal-dual algorithms for constrained online learning problems rely on two fundamental assumptions.
We show how such assumptions can be circumvented by endowing standard primal-dual templates with weakly adaptive regret minimizers.
We prove the first best-of-both-worlds no-regret guarantees which hold in absence of the two aforementioned assumptions.
arXiv Detail & Related papers (2023-02-02T16:30:33Z) - CRACT: Cascaded Regression-Align-Classification for Robust Visual
Tracking [97.84109669027225]
We introduce an improved proposal refinement module, Cascaded Regression-Align- Classification (CRAC)
CRAC yields new state-of-the-art performances on many benchmarks.
In experiments on seven benchmarks including OTB-2015, UAV123, NfS, VOT-2018, TrackingNet, GOT-10k and LaSOT, our CRACT exhibits very promising results in comparison with state-of-the-art competitors.
arXiv Detail & Related papers (2020-11-25T02:18:33Z) - Learning to Bid Optimally and Efficiently in Adversarial First-price
Auctions [40.30925727499806]
We develop the first minimax optimal online bidding algorithm that achieves an $widetildeO(sqrtT)$ regret.
We test our algorithm on three real-world first-price auction datasets obtained from Verizon Media.
arXiv Detail & Related papers (2020-07-09T05:40:39Z) - Optimal Bidding Strategy without Exploration in Real-time Bidding [14.035270361462576]
maximizing utility with a budget constraint is the primary goal for advertisers in real-time bidding (RTB) systems.
Previous works ignore the losing auctions to alleviate the difficulty with censored states.
We propose a novel practical framework using the maximum entropy principle to imitate the behavior of the true distribution observed in real-time traffic.
arXiv Detail & Related papers (2020-03-31T20:43:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.