Quantum State Readout via Overlap-Based Feature Extraction
- URL: http://arxiv.org/abs/2505.08613v1
- Date: Tue, 13 May 2025 14:30:42 GMT
- Title: Quantum State Readout via Overlap-Based Feature Extraction
- Authors: Hirofumi Nishi, Taichi Kosugi, Xinchi Huang, Satoshi Hirose, Tatsuya Okayama, Yu-ichiro Matsushita,
- Abstract summary: The proposed method involves a quantum state readout for both the raw and absolute values of the amplitudes in the quantum state.<n>Preliminary numerical simulations were performed to reconstruct the grid-based wave function and X-ray absorption spectra from a quantum state.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this study, a method for quantum state readout and feature extraction is developed using quantum overlap-based fitting of function expansions. The approach involves the quantum calculation of quantum overlaps between a target quantum state and a linear combination of basis functions, such as Lorentzian functions, via measurements, and classical optimization of the parameters in the function expansion. This method is particularly effective in scenarios where the quantum state is approximately represented as a continuous function and expressed as a combination of localized functions. The proposed method involves a quantum state readout for both the raw and absolute values of the amplitudes in the quantum state. Preliminary numerical simulations were performed to reconstruct the grid-based wave function and X-ray absorption spectra from a quantum state, and the results show that our proposed method requires fewer measurements compared to conventional quantum state measurement techniques.
Related papers
- Grassmann Variational Monte Carlo with neural wave functions [45.935798913942904]
We formalize the framework introduced by Pfau et al.citepfau2024accurate in terms of Grassmann geometry of the Hilbert space.<n>We validate our approach on the Heisenberg quantum spin model on the square lattice, achieving highly accurate energies and physical observables for a large number of excited states.
arXiv Detail & Related papers (2025-07-14T13:53:13Z) - Sample-Efficient Estimation of Nonlinear Quantum State Functions [5.641998714611475]
We introduce the quantum state function (QSF) framework by extending the SWAP test via linear combination of unitaries and parameterized quantum circuits.<n>Our framework enables the implementation of arbitrarily normalized degree-$n$ functions of quantum states with precision.<n>We apply QSF for developing quantum algorithms for fundamental tasks, including entropy, fidelity, and eigenvalue estimations.
arXiv Detail & Related papers (2024-12-02T16:40:17Z) - Variational Quantum Subspace Construction via Symmetry-Preserving Cost Functions [39.58317527488534]
We propose a variational strategy based on symmetry-preserving cost functions to iteratively construct a reduced subspace for extraction of low-lying energy states.<n>As a proof of concept, we test the proposed algorithms on H4 chain and ring, targeting both the ground-state energy and the charge gap.
arXiv Detail & Related papers (2024-11-25T20:33:47Z) - Quantum quench dynamics as a shortcut to adiabaticity [31.114245664719455]
We develop and test a quantum algorithm in which the incorporation of a quench step serves as a remedy to the diverging adiabatic timescale.
Our experiments show that this approach significantly outperforms the adiabatic algorithm.
arXiv Detail & Related papers (2024-05-31T17:07:43Z) - Efficient Gradient Estimation of Variational Quantum Circuits with Lie Algebraic Symmetries [16.4882269584049]
We develop an efficient framework that makes the Hadamard test efficiently applicable to gradient estimation for a broad range of quantum systems.
This is an exponential reduction in the measurement cost and up in time compared to existing works.
arXiv Detail & Related papers (2024-04-07T23:34:51Z) - Quantum computing of reacting flows via Hamiltonian simulation [13.377719901871027]
We develop the quantum spectral and finite difference methods for simulating reacting flows in periodic and general conditions.
The present quantum computing algorithms offer a one-shot'' solution for a given time without temporal discretization.
arXiv Detail & Related papers (2023-12-13T04:31:49Z) - Direct Characteristic-Function Tomography of the Quantum States of
Quantum Fields [5.145146101802871]
We propose a strategy for implementing a direct readout of the symmetric characteristic function of the quantum states of quantum fields.
This strategy may serve as an essential in understanding and optimizing the control of quantum fields for relativistic quantum information applications.
arXiv Detail & Related papers (2023-10-20T14:15:14Z) - Quantification of Entanglement and Coherence with Purity Detection [16.01598003770752]
Entanglement and coherence are fundamental properties of quantum systems, promising to power near future quantum technologies.
Here, we demonstrate quantitative bounds to operationally useful entanglement and coherence.
Our research offers an efficient means of verifying large-scale quantum information processing.
arXiv Detail & Related papers (2023-08-14T11:03:40Z) - A hybrid framework for estimating nonlinear functions of quantum states [2.0295402551142163]
Estimating nonlinear functions of quantum states, such as the moment $tr(rhom)$, is of fundamental and practical interest in quantum science and technology.
We show a quantum-classical hybrid framework to measure them, where the quantum part is constituted by the generalized swap test, and the classical part is realized by postprocessing the result from randomized measurements.
arXiv Detail & Related papers (2022-08-17T17:22:26Z) - Variational Approach to Quantum State Tomography based on Maximal
Entropy Formalism [3.6344381605841187]
We employ the maximal entropy formalism to construct the least biased mixed quantum state that is consistent with the given set of expectation values.
We employ a parameterized quantum circuit and a hybrid quantum-classical variational algorithm to obtain such a target state making our recipe easily implementable on a near-term quantum device.
arXiv Detail & Related papers (2022-06-06T01:16:22Z) - Quantum circuits for the preparation of spin eigenfunctions on quantum
computers [63.52264764099532]
Hamiltonian symmetries are an important instrument to classify relevant many-particle wavefunctions.
This work presents quantum circuits for the exact and approximate preparation of total spin eigenfunctions on quantum computers.
arXiv Detail & Related papers (2022-02-19T00:21:46Z) - Quasi-probabilities of work and heat in an open quantum system [0.0]
We discuss an approach to determine averages of the work, dissipated heat and variation of internal energy of an open quantum system driven by an external classical field.
We obtain a quasi-characteristic function and a quasi-probability density function for the corresponding observables.
We use this feature to show that in the limit of strong dissipation, the quantum features vanish and interpret this as the emergence of the classical limit of the energy exchange process.
arXiv Detail & Related papers (2021-10-12T06:55:39Z) - Efficient criteria of quantumness for a large system of qubits [58.720142291102135]
We discuss the dimensionless combinations of basic parameters of large, partially quantum coherent systems.
Based on analytical and numerical calculations, we suggest one such number for a system of qubits undergoing adiabatic evolution.
arXiv Detail & Related papers (2021-08-30T23:50:05Z) - Quantum Phases of Matter on a 256-Atom Programmable Quantum Simulator [41.74498230885008]
We demonstrate a programmable quantum simulator based on deterministically prepared two-dimensional arrays of neutral atoms.
We benchmark the system by creating and characterizing high-fidelity antiferromagnetically ordered states.
We then create and study several new quantum phases that arise from the interplay between interactions and coherent laser excitation.
arXiv Detail & Related papers (2020-12-22T19:00:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.