TRAIL: Trace Reasoning and Agentic Issue Localization
- URL: http://arxiv.org/abs/2505.08638v2
- Date: Mon, 19 May 2025 15:15:46 GMT
- Title: TRAIL: Trace Reasoning and Agentic Issue Localization
- Authors: Darshan Deshpande, Varun Gangal, Hersh Mehta, Jitin Krishnan, Anand Kannappan, Rebecca Qian,
- Abstract summary: This work articulates the need for robust and dynamic evaluation methods for agentic workflow traces.<n>We present a set of 148 large human-annotated traces (TRAIL) constructed using this taxonomy and grounded in established agentic benchmarks.<n>To ensure ecological validity, we curate traces from both single and multi-agent systems.
- Score: 5.025960714013197
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The increasing adoption of agentic workflows across diverse domains brings a critical need to scalably and systematically evaluate the complex traces these systems generate. Current evaluation methods depend on manual, domain-specific human analysis of lengthy workflow traces - an approach that does not scale with the growing complexity and volume of agentic outputs. Error analysis in these settings is further complicated by the interplay of external tool outputs and language model reasoning, making it more challenging than traditional software debugging. In this work, we (1) articulate the need for robust and dynamic evaluation methods for agentic workflow traces, (2) introduce a formal taxonomy of error types encountered in agentic systems, and (3) present a set of 148 large human-annotated traces (TRAIL) constructed using this taxonomy and grounded in established agentic benchmarks. To ensure ecological validity, we curate traces from both single and multi-agent systems, focusing on real-world applications such as software engineering and open-world information retrieval. Our evaluations reveal that modern long context LLMs perform poorly at trace debugging, with the best Gemini-2.5-pro model scoring a mere 11% on TRAIL. Our dataset and code are made publicly available to support and accelerate future research in scalable evaluation for agentic workflows.
Related papers
- Leveraging Knowledge Graphs and LLM Reasoning to Identify Operational Bottlenecks for Warehouse Planning Assistance [1.2749527861829046]
Our framework integrates Knowledge Graphs (KGs) and Large Language Model (LLM)-based agents.<n>It transforms raw DES data into a semantically rich KG, capturing relationships between simulation events and entities.<n>An LLM-based agent uses iterative reasoning, generating interdependent sub-questions. For each sub-question, it creates Cypher queries for KG interaction, extracts information, and self-reflects to correct errors.
arXiv Detail & Related papers (2025-07-23T07:18:55Z) - Deep Research Agents: A Systematic Examination And Roadmap [79.04813794804377]
Deep Research (DR) agents are designed to tackle complex, multi-turn informational research tasks.<n>In this paper, we conduct a detailed analysis of the foundational technologies and architectural components that constitute DR agents.
arXiv Detail & Related papers (2025-06-22T16:52:48Z) - AgentSwift: Efficient LLM Agent Design via Value-guided Hierarchical Search [58.98450205734779]
Large language model (LLM) agents have demonstrated strong capabilities across diverse domains.<n>Existing agent search methods suffer from three major limitations.<n>We introduce a comprehensive framework to address these challenges.
arXiv Detail & Related papers (2025-06-06T12:07:23Z) - LAM SIMULATOR: Advancing Data Generation for Large Action Model Training via Online Exploration and Trajectory Feedback [121.78866929908871]
Large Action Models (LAMs) for AI Agents offer incredible potential but face challenges due to the need for high-quality training data.<n>We present LAM SIMULATOR, a comprehensive framework designed for online exploration of agentic tasks with high-quality feedback.<n>Our framework features a dynamic task query generator, an extensive collection of tools, and an interactive environment where Large Language Model (LLM) Agents can call tools and receive real-time feedback.
arXiv Detail & Related papers (2025-06-02T22:36:02Z) - ThinkGeo: Evaluating Tool-Augmented Agents for Remote Sensing Tasks [54.52092001110694]
ThinkGeo is a benchmark designed to evaluate tool-augmented agents on remote sensing tasks via structured tool use and multi-step planning.<n>Inspired by tool-interaction paradigms, ThinkGeo includes human-curated queries spanning a wide range of real-world applications.<n>Our analysis reveals notable disparities in tool accuracy and planning consistency across models.
arXiv Detail & Related papers (2025-05-29T17:59:38Z) - LaMDAgent: An Autonomous Framework for Post-Training Pipeline Optimization via LLM Agents [3.6117068575553595]
We introduce LaMDAgent, a framework that autonomously constructs and optimize full post-training pipelines.<n>LaMDAgent improves tool-use accuracy by 9.0 points while preserving instruction-following capabilities.<n>It uncovers effective post-training strategies that are often overlooked by conventional human-driven exploration.
arXiv Detail & Related papers (2025-05-28T04:30:51Z) - Agentic Predictor: Performance Prediction for Agentic Workflows via Multi-View Encoding [56.565200973244146]
Agentic Predictor is a lightweight predictor for efficient agentic workflow evaluation.<n>By learning to approximate task success rates, Agentic Predictor enables fast and accurate selection of optimal agentic workflow configurations.
arXiv Detail & Related papers (2025-05-26T09:46:50Z) - Thinking Longer, Not Larger: Enhancing Software Engineering Agents via Scaling Test-Time Compute [61.00662702026523]
We propose a unified Test-Time Compute scaling framework that leverages increased inference-time instead of larger models.<n>Our framework incorporates two complementary strategies: internal TTC and external TTC.<n>We demonstrate our textbf32B model achieves a 46% issue resolution rate, surpassing significantly larger models such as DeepSeek R1 671B and OpenAI o1.
arXiv Detail & Related papers (2025-03-31T07:31:32Z) - Factored Agents: Decoupling In-Context Learning and Memorization for Robust Tool Use [4.437184840125514]
We propose a novel factored agent architecture designed to overcome the limitations of traditional single-agent systems in agentic AI.<n>Our approach decomposes the agent into two specialized components: (1) a large language model that serves as a high level planner and in-context learner, and (2) a smaller language model which acts as a memorizer of tool format and output.<n> Empirical evaluations demonstrate that our factored architecture significantly improves planning accuracy and error resilience, while elucidating the inherent trade-off between in-context learning and static memorization.
arXiv Detail & Related papers (2025-03-29T01:27:11Z) - Large Language Models as Realistic Microservice Trace Generators [54.85489678342595]
Workload traces are essential to understand complex computer systems' behavior and manage processing and memory resources.<n>This paper proposes a first-of-a-kind approach that relies on training a large language model to generate synthetic workload traces.<n>Our model adapts to downstream trace-related tasks, such as predicting key trace features and infilling missing data.
arXiv Detail & Related papers (2024-12-16T12:48:04Z) - AgentTrek: Agent Trajectory Synthesis via Guiding Replay with Web Tutorials [53.376263056033046]
Existing approaches rely on expensive human annotation, making them unsustainable at scale.<n>We propose AgentTrek, a scalable data synthesis pipeline that generates web agent trajectories by leveraging publicly available tutorials.<n>Our fully automated approach significantly reduces data collection costs, achieving a cost of just $0.55 per high-quality trajectory without human annotators.
arXiv Detail & Related papers (2024-12-12T18:59:27Z) - SWE-Search: Enhancing Software Agents with Monte Carlo Tree Search and Iterative Refinement [18.84439000902905]
Current large language model (LLM)-based software agents often follow linear, sequential processes.<n>We propose SWE-Search, a multi-agent framework that integrates Monte Carlo Tree Search (MCTS) with a self-improvement mechanism.<n>This highlights the potential of self-evaluation driven search techniques in complex software engineering environments.
arXiv Detail & Related papers (2024-10-26T22:45:56Z) - Benchmarking Agentic Workflow Generation [80.74757493266057]
We introduce WorfBench, a unified workflow generation benchmark with multi-faceted scenarios and intricate graph workflow structures.<n>We also present WorfEval, a systemic evaluation protocol utilizing subsequence and subgraph matching algorithms.<n>We observe that the generated can enhance downstream tasks, enabling them to achieve superior performance with less time during inference.
arXiv Detail & Related papers (2024-10-10T12:41:19Z) - Leveraging Log Instructions in Log-based Anomaly Detection [0.5949779668853554]
We propose a method for reliable and practical anomaly detection from system logs.
It overcomes the common disadvantage of related works by building an anomaly detection model with log instructions from the source code of 1000+ GitHub projects.
The proposed method, named ADLILog, combines the log instructions and the data from the system of interest (target system) to learn a deep neural network model.
arXiv Detail & Related papers (2022-07-07T10:22:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.