論文の概要: Federated Large Language Models: Feasibility, Robustness, Security and Future Directions
- arxiv url: http://arxiv.org/abs/2505.08830v1
- Date: Tue, 13 May 2025 03:23:54 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-15 21:44:09.245923
- Title: Federated Large Language Models: Feasibility, Robustness, Security and Future Directions
- Title(参考訳): フェデレートされた大規模言語モデル:可能性、ロバスト性、セキュリティ、今後の方向性
- Authors: Wenhao Jiang, Yuchuan Luo, Guilin Deng, Silong Chen, Xu Yang, Shihong Wu, Xinwen Gao, Lin Liu, Shaojing Fu,
- Abstract要約: LLM(Large Language Models)とFL(Federated Learning)の統合は、分散データに対する共同トレーニングのための有望なソリューションを提供する。
本稿では, 実現可能性, 堅牢性, セキュリティ, 今後の方向性の4つの重要な視点から課題を考察する。
- 参考スコア(独自算出の注目度): 18.21433627004719
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The integration of Large Language Models (LLMs) and Federated Learning (FL) presents a promising solution for joint training on distributed data while preserving privacy and addressing data silo issues. However, this emerging field, known as Federated Large Language Models (FLLM), faces significant challenges, including communication and computation overheads, heterogeneity, privacy and security concerns. Current research has primarily focused on the feasibility of FLLM, but future trends are expected to emphasize enhancing system robustness and security. This paper provides a comprehensive review of the latest advancements in FLLM, examining challenges from four critical perspectives: feasibility, robustness, security, and future directions. We present an exhaustive survey of existing studies on FLLM feasibility, introduce methods to enhance robustness in the face of resource, data, and task heterogeneity, and analyze novel risks associated with this integration, including privacy threats and security challenges. We also review the latest developments in defense mechanisms and explore promising future research directions, such as few-shot learning, machine unlearning, and IP protection. This survey highlights the pressing need for further research to enhance system robustness and security while addressing the unique challenges posed by the integration of FL and LLM.
- Abstract(参考訳): LLM(Large Language Models)とFL(Federated Learning)の統合は、プライバシを保持し、データサイロ問題に対処しながら、分散データに対する共同トレーニングのための有望なソリューションを提供する。
しかしながら、この新たな分野であるFederated Large Language Models (FLLM)は、通信や計算オーバーヘッド、不均一性、プライバシ、セキュリティ上の懸念など、重大な課題に直面している。
現在の研究は主にFLLMの実現性に焦点を当てているが、今後のトレンドはシステムの堅牢性とセキュリティの強化を強調することが期待されている。
本稿では,FLLMの最近の進歩を概観し,実現可能性,堅牢性,セキュリティ,今後の方向性の4点から課題を考察する。
本稿では、FLLMの実現可能性に関する既存の研究を徹底的に調査し、資源、データ、タスクの不均一性の面において堅牢性を高める方法を紹介し、プライバシーの脅威やセキュリティ上の課題を含む、この統合に関連する新たなリスクを分析する。
また、防衛機構の最近の発展を概観し、数発の学習、機械学習、IP保護といった将来的な研究の方向性を探究する。
この調査は、FLとLLMの統合によって引き起こされる固有の課題に対処しながら、システムの堅牢性とセキュリティを強化するためのさらなる研究の必要性を強調している。
関連論文リスト
- A Survey of Safety on Large Vision-Language Models: Attacks, Defenses and Evaluations [127.52707312573791]
この調査はLVLMの安全性を包括的に分析し、攻撃、防御、評価方法などの重要な側面をカバーする。
我々はこれらの相互関連コンポーネントを統合する統一フレームワークを導入し、LVLMの脆弱性を概観する。
我々は,最新のLVLMであるDeepseek Janus-Pro上で一連の安全性評価を行い,その結果を理論的に分析する。
論文 参考訳(メタデータ) (2025-02-14T08:42:43Z) - Ten Challenging Problems in Federated Foundation Models [55.343738234307544]
フェデレーション・ファンデーション・モデル(Federated Foundation Models、FedFM)は、フェデレーション・モデルの一般的な能力とフェデレーション・ラーニングのプライバシー保護能力を融合させる分散学習パラダイムである。
本稿では,FedFMに固有の10の課題について,基礎理論,プライベートデータの利用,継続学習,非学習,非IIDおよびグラフデータ,双方向知識伝達,インセンティブ機構設計,ゲーム機構設計,モデル透かし,効率を包括的に要約する。
論文 参考訳(メタデータ) (2025-02-14T04:01:15Z) - New Emerged Security and Privacy of Pre-trained Model: a Survey and Outlook [54.24701201956833]
セキュリティとプライバシーの問題は、事前訓練されたモデルに対するユーザーの信頼を損なう。
現在の文献は、事前訓練されたモデルに対する攻撃と防御の明確な分類を欠いている。
この分類法は、攻撃と防御をNo-Change、Input-Change、Model-Changeアプローチに分類する。
論文 参考訳(メタデータ) (2024-11-12T10:15:33Z) - Trustworthy Federated Learning: Privacy, Security, and Beyond [37.495790989584584]
Federated Learning (FL)は、生データを転送することなく、分散データソース間で協調的なモデルトレーニングを促進することで、問題に対処する。
FLが抱えるセキュリティとプライバシに関する広範な調査を行い、通信リンクの脆弱性とサイバー脅威の可能性を明らかにします。
FLフレームワーク内で発生する複雑なセキュリティ課題を特定し、セキュアで効率的なFLシステムの開発に寄与することを目的としている。
論文 参考訳(メタデータ) (2024-11-03T14:18:01Z) - Federated Large Language Models: Current Progress and Future Directions [63.68614548512534]
本稿では,LLM(FedLLM)のフェデレーション学習について調査し,最近の進歩と今後の方向性を明らかにする。
ファインチューニングと迅速な学習という2つの重要な側面に注目し、既存の作業と関連する研究課題について議論する。
論文 参考訳(メタデータ) (2024-09-24T04:14:33Z) - Position Paper: Assessing Robustness, Privacy, and Fairness in Federated
Learning Integrated with Foundation Models [39.86957940261993]
ファンデーションモデル(FM)をフェデレートラーニング(FL)に統合することは、堅牢性、プライバシ、公正性の点で新しい問題をもたらす。
我々は、関連するトレードオフを分析し、この統合によってもたらされる脅威と問題を明らかにし、これらの課題をナビゲートするための一連の基準と戦略を提案する。
論文 参考訳(メタデータ) (2024-02-02T19:26:00Z) - Security and Privacy Challenges of Large Language Models: A Survey [2.6986500640871482]
LLM(Large Language Models)は、テキストの生成や要約、言語翻訳、質問応答など、非常に優れた機能を示し、複数の分野に貢献している。
これらのモデルは、Jailbreak攻撃、データ中毒攻撃、Personally Identible Information(PII)漏洩攻撃など、セキュリティやプライバシ攻撃にも脆弱である。
この調査では、トレーニングデータとユーザの両方に対するLLMのセキュリティとプライバシの課題と、輸送、教育、医療といったさまざまな領域におけるアプリケーションベースのリスクについて、徹底的にレビューする。
論文 参考訳(メタデータ) (2024-01-30T04:00:54Z) - Exploring Federated Unlearning: Analysis, Comparison, and Insights [101.64910079905566]
フェデレーション・アンラーニングは、フェデレーション・システムで訓練されたモデルからデータを選択的に除去することを可能にする。
本稿では,既存のフェデレーション・アンラーニング手法について検討し,アルゴリズムの効率,モデル精度への影響,プライバシ保護の有効性について検討する。
フェデレートされたアンラーニング手法を評価するための統一ベンチマークであるOpenFederatedUnlearningフレームワークを提案する。
論文 参考訳(メタデータ) (2023-10-30T01:34:33Z) - A Survey of Trustworthy Federated Learning with Perspectives on
Security, Robustness, and Privacy [47.89042524852868]
Federated Learning (FL) は,さまざまな現実のシナリオに対して,有望なソリューションとして注目されている。
しかし、データの分離とプライバシーに関する課題は、FLシステムの信頼性を脅かす。
論文 参考訳(メタデータ) (2023-02-21T12:52:12Z) - New Challenges in Reinforcement Learning: A Survey of Security and
Privacy [26.706957408693363]
強化学習(Reinforcement Learning, RL)は、AIの最も重要な分野のひとつ。
RLは医療、データ市場、自動運転、ロボット工学など、さまざまな分野で広く採用されている。
これらのアプリケーションやシステムは、セキュリティやプライバシ攻撃に弱いことが示されている。
論文 参考訳(メタデータ) (2022-12-31T12:30:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。