論文の概要: Intelligent Road Anomaly Detection with Real-time Notification System for Enhanced Road Safety
- arxiv url: http://arxiv.org/abs/2505.08882v1
- Date: Tue, 13 May 2025 18:12:03 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-15 21:44:09.26491
- Title: Intelligent Road Anomaly Detection with Real-time Notification System for Enhanced Road Safety
- Title(参考訳): 道路安全性向上のためのリアルタイム通知システムによるインテリジェント道路異常検出
- Authors: Ali Almakhluk, Uthman Baroudi, Yasser El-Alfy,
- Abstract要約: ポットホールや亀裂などの道路損傷異常は、事故の重要かつ頻発する原因として現れている。
網羅的なシステムは、穴、亀裂を検知し、そのサイズを分類し、当局による適切な行動のためにデータをクラウドに送信するために開発されている。
また、道路上で重篤な異常が検出された場合、周囲の車両に警告信号を発信する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This study aims to improve transportation safety, especially traffic safety. Road damage anomalies such as potholes and cracks have emerged as a significant and recurring cause for accidents. To tackle this problem and improve road safety, a comprehensive system has been developed to detect potholes, cracks (e.g. alligator, transverse, longitudinal), classify their sizes, and transmit this data to the cloud for appropriate action by authorities. The system also broadcasts warning signals to nearby vehicles warning them if a severe anomaly is detected on the road. Moreover, the system can count road anomalies in real-time. It is emulated through the utilization of Raspberry Pi, a camera module, deep learning model, laptop, and cloud service. Deploying this innovative solution aims to proactively enhance road safety by notifying relevant authorities and drivers about the presence of potholes and cracks to take actions, thereby mitigating potential accidents arising from this prevalent road hazard leading to safer road conditions for the whole community.
- Abstract(参考訳): 本研究は,交通安全,特に交通安全の改善を目的としている。
ポットホールや亀裂などの道路損傷異常は、事故の重要かつ頻発する原因として現れている。
この問題に対処し、道路安全を改善するために、穴、亀裂(例えばアリゲータ、横方向、縦方向)を検出し、そのサイズを分類し、当局の適切な行動のためにクラウドに送信する総合的なシステムを開発した。
また、道路上で重篤な異常が検出された場合、周囲の車両に警告信号を発信する。
さらに,道路異常をリアルタイムで計測できる。
Raspberry Pi、カメラモジュール、ディープラーニングモデル、ラップトップ、クラウドサービスの利用を通じてエミュレートされている。
この革新的なソリューションの展開は、関連する当局やドライバーに行動を起こすための穴や亀裂の存在を知らせることにより、道路の安全を積極的に向上することを目的としている。
関連論文リスト
- Vehicle Speed Detection System Utilizing YOLOv8: Enhancing Road Safety and Traffic Management for Metropolitan Areas [0.0]
バングラデシュでは道路事故が主要な死因の1つとなっている。
YOLOv8モデルは、密接な監督の下で訓練されたときに、より高速で精度の高いビデオ中の車を認識、追跡することができる。
論文 参考訳(メタデータ) (2024-06-11T20:45:40Z) - Enhancing Road Safety: Real-Time Detection of Driver Distraction through Convolutional Neural Networks [0.0]
本研究は,運転者の気晴らしをリアルタイムに検出する上で,最も効率的なモデルを明らかにすることを目的とする。
最終的な目的は、この発見を車両の安全システムに組み込むことであり、不注意によって引き起こされる事故を防ぐ能力を大幅に向上させることである。
論文 参考訳(メタデータ) (2024-05-28T03:34:55Z) - RACER: Epistemic Risk-Sensitive RL Enables Fast Driving with Fewer Crashes [57.319845580050924]
本稿では,リスク感応制御と適応行動空間のカリキュラムを組み合わせた強化学習フレームワークを提案する。
提案アルゴリズムは,現実世界のオフロード運転タスクに対して,高速なポリシーを学習可能であることを示す。
論文 参考訳(メタデータ) (2024-05-07T23:32:36Z) - CAT: Closed-loop Adversarial Training for Safe End-to-End Driving [54.60865656161679]
Adversarial Training (CAT) は、自動運転車における安全なエンドツーエンド運転のためのフレームワークである。
Catは、安全クリティカルなシナリオでエージェントを訓練することで、運転エージェントの安全性を継続的に改善することを目的としている。
猫は、訓練中のエージェントに対抗する敵シナリオを効果的に生成できる。
論文 参考訳(メタデータ) (2023-10-19T02:49:31Z) - MSight: An Edge-Cloud Infrastructure-based Perception System for
Connected Automated Vehicles [58.461077944514564]
本稿では,自動走行車に特化して設計された最先端道路側認識システムであるMSightについて述べる。
MSightは、リアルタイムの車両検出、ローカライゼーション、トラッキング、短期的な軌道予測を提供する。
評価は、待ち時間を最小限にしてレーンレベルの精度を維持するシステムの能力を強調している。
論文 参考訳(メタデータ) (2023-10-08T21:32:30Z) - AI on the Road: A Comprehensive Analysis of Traffic Accidents and
Accident Detection System in Smart Cities [0.0]
本稿では,米国各地における交通事故の包括的分析について述べる。
事故検出と交通分析の課題に対処するために,交通監視カメラと行動認識システムを用いたフレームワークを提案する。
論文 参考訳(メタデータ) (2023-07-22T17:08:13Z) - Infrastructure-based End-to-End Learning and Prevention of Driver
Failure [68.0478623315416]
フェールネットは、規模が拡大したミニ都市において、名目上と無謀なドライバーの両方の軌道上で、エンドツーエンドでトレーニングされた、繰り返しニューラルネットワークである。
制御障害、上流での認識エラー、ドライバーのスピードを正確に識別し、名目運転と区別することができる。
速度や周波数ベースの予測器と比較すると、FailureNetのリカレントニューラルネットワーク構造は予測能力を向上し、ハードウェアにデプロイすると84%以上の精度が得られる。
論文 参考訳(メタデータ) (2023-03-21T22:55:51Z) - Camera-Radar Perception for Autonomous Vehicles and ADAS: Concepts,
Datasets and Metrics [77.34726150561087]
本研究の目的は、ADASおよび自動運転車のカメラおよびレーダーによる認識の現在のシナリオに関する研究を行うことである。
両センサと融合に関する概念と特徴を提示する。
本稿では、ディープラーニングに基づく検出とセグメンテーションタスクの概要と、車両の認識における主要なデータセット、メトリクス、課題、オープンな質問について説明する。
論文 参考訳(メタデータ) (2023-03-08T00:48:32Z) - A Computer Vision-assisted Approach to Automated Real-Time Road
Infrastructure Management [0.0]
そこで本研究では,車両ダッシュボード搭載スマートフォンカメラを用いて,道路災害をリアルタイムに検出・分類するための監視対象検出手法を提案する。
IEEEの2020 Global Road damage Detection (GRDC) Challengeに参加した121チームのトップ5にランクインした。
論文 参考訳(メタデータ) (2022-02-27T04:08:00Z) - A novel method of predictive collision risk area estimation for
proactive pedestrian accident prevention system in urban surveillance
infrastructure [6.777019450570473]
道路交通事故は、人間の生活に深刻な脅威をもたらし、早期死亡の主な原因となっています。
歩行者の衝突を予防するためのブレークスルーは、CCTVなどの視覚センサに基づいて歩行者の潜在的なリスクを認識することです。
本研究では,無信号横断歩道における衝突リスク領域推定システムを提案する。
論文 参考訳(メタデータ) (2021-05-06T10:29:44Z) - Emergent Road Rules In Multi-Agent Driving Environments [84.82583370858391]
運転環境の要素が道路ルールの出現の原因となるかを分析する。
2つの重要な要因が雑音知覚とエージェントの空間密度であることがわかった。
我々の結果は、世界中の国々が安全で効率的な運転で合意した社会道路規則を実証的に支持する。
論文 参考訳(メタデータ) (2020-11-21T09:43:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。