DyGSSM: Multi-view Dynamic Graph Embeddings with State Space Model Gradient Update
- URL: http://arxiv.org/abs/2505.09017v1
- Date: Tue, 13 May 2025 23:12:07 GMT
- Title: DyGSSM: Multi-view Dynamic Graph Embeddings with State Space Model Gradient Update
- Authors: Bizhan Alipour Pijan, Serdar Bozdag,
- Abstract summary: We propose a novel method called Multi-view Dynamic Graph Embeddings with State Space Model Gradient Update (DyGSSM)<n>Our approach combines Graph Convolution Networks (GCN) for local feature extraction and random walk with Gated Recurrent Unit (GRU) for global feature extraction in each snapshot.<n> Experiments on five public datasets show that our method outperforms existing baseline and state-of-the-art (SOTA) methods in 17 out of 20 cases.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Most of the dynamic graph representation learning methods involve dividing a dynamic graph into discrete snapshots to capture the evolving behavior of nodes over time. Existing methods primarily capture only local or global structures of each node within a snapshot using message-passing and random walk-based methods. Then, they utilize sequence-based models (e.g., transformers) to encode the temporal evolution of node embeddings, and meta-learning techniques to update the model parameters. However, these approaches have two limitations. First, they neglect the extraction of global and local information simultaneously in each snapshot. Second, they fail to consider the model's performance in the current snapshot during parameter updates, resulting in a lack of temporal dependency management. Recently, HiPPO (High-order Polynomial Projection Operators) algorithm has gained attention for their ability to optimize and preserve sequence history in State Space Model (SSM). To address the aforementioned limitations in dynamic graph representation learning, we propose a novel method called Multi-view Dynamic Graph Embeddings with State Space Model Gradient Update (DyGSSM). Our approach combines Graph Convolution Networks (GCN) for local feature extraction and random walk with Gated Recurrent Unit (GRU) for global feature extraction in each snapshot. We then integrate the local and global features using a cross-attention mechanism. Additionally, we incorporate an SSM based on HiPPO algorithm to account for long-term dependencies when updating model parameters, ensuring that model performance in each snapshot informs subsequent updates. Experiments on five public datasets show that our method outperforms existing baseline and state-of-the-art (SOTA) methods in 17 out of 20 cases.
Related papers
- ScaDyG:A New Paradigm for Large-scale Dynamic Graph Learning [31.629956388962814]
ScaDyG is a time-aware scalable learning paradigm for dynamic graph networks.<n> experiments on 12 datasets demonstrate that ScaDyG performs comparably well or even outperforms other SOTA methods in both node and link-level downstream tasks.
arXiv Detail & Related papers (2025-01-27T12:39:16Z) - DyG-Mamba: Continuous State Space Modeling on Dynamic Graphs [59.434893231950205]
Dynamic graph learning aims to uncover evolutionary laws in real-world systems.
We propose DyG-Mamba, a new continuous state space model for dynamic graph learning.
We show that DyG-Mamba achieves state-of-the-art performance on most datasets.
arXiv Detail & Related papers (2024-08-13T15:21:46Z) - Input Snapshots Fusion for Scalable Discrete-Time Dynamic Graph Neural Networks [27.616083395612595]
We propose SFDyG, which combines Hawkes processes with graph neural networks to capture temporal and structural patterns in dynamic graphs effectively.<n>By fusing multiple snapshots into a single temporal graph, SFDyG decouples computational complexity from the number of snapshots, enabling efficient full-batch and mini-batch training.
arXiv Detail & Related papers (2024-05-11T10:05:55Z) - TimeGraphs: Graph-based Temporal Reasoning [64.18083371645956]
TimeGraphs is a novel approach that characterizes dynamic interactions as a hierarchical temporal graph.
Our approach models the interactions using a compact graph-based representation, enabling adaptive reasoning across diverse time scales.
We evaluate TimeGraphs on multiple datasets with complex, dynamic agent interactions, including a football simulator, the Resistance game, and the MOMA human activity dataset.
arXiv Detail & Related papers (2024-01-06T06:26:49Z) - Unified and Dynamic Graph for Temporal Character Grouping in Long Videos [31.192044026127032]
Video temporal character grouping locates appearing moments of major characters within a video according to their identities.
Recent works have evolved from unsupervised clustering to graph-based supervised clustering.
We present a unified and dynamic graph (UniDG) framework for temporal character grouping.
arXiv Detail & Related papers (2023-08-27T13:22:55Z) - Local-Global Information Interaction Debiasing for Dynamic Scene Graph
Generation [51.92419880088668]
We propose a novel DynSGG model based on multi-task learning, DynSGG-MTL, which introduces the local interaction information and global human-action interaction information.
Long-temporal human actions supervise the model to generate multiple scene graphs that conform to the global constraints and avoid the model being unable to learn the tail predicates.
arXiv Detail & Related papers (2023-08-10T01:24:25Z) - TodyNet: Temporal Dynamic Graph Neural Network for Multivariate Time
Series Classification [6.76723360505692]
We propose a novel temporal dynamic neural graph network (TodyNet) that can extract hidden-temporal dependencies without undefined graph structure.
The experiments on 26 UEA benchmark datasets illustrate that the proposed TodyNet outperforms existing deep learning-based methods in the MTSC tasks.
arXiv Detail & Related papers (2023-04-11T09:21:28Z) - Gait Recognition in the Wild with Multi-hop Temporal Switch [81.35245014397759]
gait recognition in the wild is a more practical problem that has attracted the attention of the community of multimedia and computer vision.
This paper presents a novel multi-hop temporal switch method to achieve effective temporal modeling of gait patterns in real-world scenes.
arXiv Detail & Related papers (2022-09-01T10:46:09Z) - Dynamic Graph Learning-Neural Network for Multivariate Time Series
Modeling [2.3022070933226217]
We propose a novel framework, namely static- and dynamic-graph learning-neural network (GL)
The model acquires static and dynamic graph matrices from data to model long-term and short-term patterns respectively.
It achieves state-of-the-art performance on almost all datasets.
arXiv Detail & Related papers (2021-12-06T08:19:15Z) - Connecting the Dots: Multivariate Time Series Forecasting with Graph
Neural Networks [91.65637773358347]
We propose a general graph neural network framework designed specifically for multivariate time series data.
Our approach automatically extracts the uni-directed relations among variables through a graph learning module.
Our proposed model outperforms the state-of-the-art baseline methods on 3 of 4 benchmark datasets.
arXiv Detail & Related papers (2020-05-24T04:02:18Z) - Disentangling and Unifying Graph Convolutions for Skeleton-Based Action
Recognition [79.33539539956186]
We propose a simple method to disentangle multi-scale graph convolutions and a unified spatial-temporal graph convolutional operator named G3D.
By coupling these proposals, we develop a powerful feature extractor named MS-G3D based on which our model outperforms previous state-of-the-art methods on three large-scale datasets.
arXiv Detail & Related papers (2020-03-31T11:28:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.