論文の概要: Online Learning of Neural Networks
- arxiv url: http://arxiv.org/abs/2505.09167v1
- Date: Wed, 14 May 2025 06:03:07 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-15 21:44:09.384754
- Title: Online Learning of Neural Networks
- Title(参考訳): ニューラルネットワークのオンライン学習
- Authors: Amit Daniely, Idan Mehalel, Elchanan Mossel,
- Abstract要約: 本研究では, 1, ldots, Y$ の有限ラベル集合に単位球から関数を実装した符号活性化関数を用いたフィードフォワードニューラルネットワークのオンライン学習について検討した。
- 参考スコア(独自算出の注目度): 20.639300246483653
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study online learning of feedforward neural networks with the sign activation function that implement functions from the unit ball in $\mathbb{R}^d$ to a finite label set $\{1, \ldots, Y\}$. First, we characterize a margin condition that is sufficient and in some cases necessary for online learnability of a neural network: Every neuron in the first hidden layer classifies all instances with some margin $\gamma$ bounded away from zero. Quantitatively, we prove that for any net, the optimal mistake bound is at most approximately $\mathtt{TS}(d,\gamma)$, which is the $(d,\gamma)$-totally-separable-packing number, a more restricted variation of the standard $(d,\gamma)$-packing number. We complement this result by constructing a net on which any learner makes $\mathtt{TS}(d,\gamma)$ many mistakes. We also give a quantitative lower bound of approximately $\mathtt{TS}(d,\gamma) \geq \max\{1/(\gamma \sqrt{d})^d, d\}$ when $\gamma \geq 1/2$, implying that for some nets and input sequences every learner will err for $\exp(d)$ many times, and that a dimension-free mistake bound is almost always impossible. To remedy this inevitable dependence on $d$, it is natural to seek additional natural restrictions to be placed on the network, so that the dependence on $d$ is removed. We study two such restrictions. The first is the multi-index model, in which the function computed by the net depends only on $k \ll d$ orthonormal directions. We prove a mistake bound of approximately $(1.5/\gamma)^{k + 2}$ in this model. The second is the extended margin assumption. In this setting, we assume that all neurons (in all layers) in the network classify every ingoing input from previous layer with margin $\gamma$ bounded away from zero. In this model, we prove a mistake bound of approximately $(\log Y)/ \gamma^{O(L)}$, where L is the depth of the network.
- Abstract(参考訳): 本研究では,符号活性化関数を用いたフィードフォワードニューラルネットワークのオンライン学習を,$\mathbb{R}^d$ の単位球から有限ラベル集合 $\{1, \ldots, Y\}$ の関数に実装する。
まず、ニューラルネットワークのオンライン学習に必要となるマージン条件を特徴づける: 最初の隠蔽層にあるすべてのニューロンは、ゼロから離れたマージン$\gamma$ですべてのインスタンスを分類する。
定量的に、任意のネットに対して、最適誤差境界は、少なくとも$(d,\gamma)$-totally-sparable-packing numberである$(d,\gamma)$-packing numberである$(d,\gamma)$-packing numberの約$\mathtt{TS}(d,\gamma)$であることを示す。
学習者が$\mathtt{TS}(d,\gamma)$多くの誤りを犯すようなネットを構築することで、この結果を補完する。
約$\mathtt{TS}(d,\gamma) \geq \max\{1/(\gamma \sqrt{d})^d, d\}$ if $\gamma \geq 1/2$, すなわち、あるネットと入力シーケンスに対して、すべての学習者が$\exp(d)$に対してerrとなることを意味する。
この$d$への避けられない依存を解消するためには、ネットワーク上に置かれる追加の自然な制約を求めることが自然であり、$d$への依存が取り除かれる。
我々はそのような制限を2つ研究する。
1つはマルチインデックスモデルであり、ネットによって計算される関数は$k \ll d$正則方向のみに依存する。
このモデルでは、約$(1.5/\gamma)^{k + 2}$の誤り境界が証明される。
2つ目は、拡張されたマージンの仮定である。
この設定では、ネットワーク内のすべてのニューロン(すべての層)が、ゼロから離れたマージン$\gamma$で前の層から入ってくる全ての入力を分類していると仮定する。
このモデルでは、L がネットワークの深さである約$(\log Y)/ \gamma^{O(L)}$の誤り境界を証明している。
関連論文リスト
- Deep Neural Networks: Multi-Classification and Universal Approximation [0.0]
我々は,幅2ドル,深さ2N+4M-1$のReLUディープニューラルネットワークが,$N$要素からなる任意のデータセットに対して有限標本記憶を達成できることを実証した。
また、$W1,p$関数を近似するための深さ推定と$Lp(Omega;mathbbRm)$ for $mgeq1$を近似するための幅推定も提供する。
論文 参考訳(メタデータ) (2024-09-10T14:31:21Z) - Neural network learns low-dimensional polynomials with SGD near the information-theoretic limit [75.4661041626338]
単一インデックス対象関数 $f_*(boldsymbolx) = textstylesigma_*left(langleboldsymbolx,boldsymbolthetarangleright)$ の勾配勾配勾配学習問題について検討する。
SGDに基づくアルゴリズムにより最適化された2層ニューラルネットワークは、情報指数に支配されない複雑さで$f_*$を学習する。
論文 参考訳(メタデータ) (2024-06-03T17:56:58Z) - Learning Hierarchical Polynomials with Three-Layer Neural Networks [56.71223169861528]
3層ニューラルネットワークを用いた標準ガウス分布における階層関数の学習問題について検討する。
次数$k$s$p$の大規模なサブクラスの場合、正方形損失における階層的勾配によるトレーニングを受けた3層ニューラルネットワークは、テストエラーを消すためにターゲット$h$を学習する。
この研究は、3層ニューラルネットワークが複雑な特徴を学習し、その結果、幅広い階層関数のクラスを学ぶ能力を示す。
論文 参考訳(メタデータ) (2023-11-23T02:19:32Z) - Neural Networks Efficiently Learn Low-Dimensional Representations with
SGD [22.703825902761405]
SGDで訓練されたReLU NNは、主方向を回復することで、$y=f(langleboldsymbolu,boldsymbolxrangle) + epsilon$という形の単一インデックスターゲットを学習できることを示す。
また、SGDによる近似低ランク構造を用いて、NNに対して圧縮保証を提供する。
論文 参考訳(メタデータ) (2022-09-29T15:29:10Z) - Understanding Deep Neural Function Approximation in Reinforcement
Learning via $\epsilon$-Greedy Exploration [53.90873926758026]
本稿では、強化学習(RL)における深部神経機能近似の理論的研究について述べる。
我々は、Besov(およびBarron)関数空間によって与えられるディープ(および2層)ニューラルネットワークによる$epsilon$-greedy探索により、バリューベースのアルゴリズムに焦点を当てる。
我々の解析は、ある平均測度$mu$の上の$L2(mathrmdmu)$-integrable空間における時間差誤差を再構成し、非イド設定の下で一般化問題に変換する。
論文 参考訳(メタデータ) (2022-09-15T15:42:47Z) - Learning (Very) Simple Generative Models Is Hard [45.13248517769758]
我々は,$mathbbRdtobbRd'$の出力座標が$mathrmpoly(d)$ニューロンを持つ一層ReLUネットワークである場合でも,リアルタイムアルゴリズムが問題を解決可能であることを示す。
我々の証明の鍵となる要素は、コンパクトに支持されたピースワイズ線形関数$f$をニューラルネットワークで束ねたスロープで構築することであり、$mathcalN(0,1)$のプッシュフォワードは$mathcalのすべての低度モーメントと一致する。
論文 参考訳(メタデータ) (2022-05-31T17:59:09Z) - Threshold Phenomena in Learning Halfspaces with Massart Noise [56.01192577666607]
ガウス境界の下でのマスアートノイズ付きmathbbRd$におけるPAC学習ハーフスペースの問題について検討する。
この結果は,Massartモデルにおける学習ハーフスペースの複雑さを定性的に特徴づけるものである。
論文 参考訳(メタデータ) (2021-08-19T16:16:48Z) - Learning Over-Parametrized Two-Layer ReLU Neural Networks beyond NTK [58.5766737343951]
2層ニューラルネットワークを学習する際の降下のダイナミクスについて考察する。
過度にパラメータ化された2層ニューラルネットワークは、タンジェントサンプルを用いて、ほとんどの地上で勾配損失を許容的に学習できることを示す。
論文 参考訳(メタデータ) (2020-07-09T07:09:28Z) - A Corrective View of Neural Networks: Representation, Memorization and
Learning [26.87238691716307]
我々はニューラルネットワーク近似の補正機構を開発する。
ランダム・フィーチャー・レギュレーション(RF)における2層ニューラルネットワークは任意のラベルを記憶できることを示す。
また、3層ニューラルネットワークについても検討し、その補正機構がスムーズなラジアル関数に対する高速な表現率をもたらすことを示す。
論文 参考訳(メタデータ) (2020-02-01T20:51:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。