Tunable Hilbert space fragmentation and extended critical regime
- URL: http://arxiv.org/abs/2505.09346v1
- Date: Wed, 14 May 2025 12:45:59 GMT
- Title: Tunable Hilbert space fragmentation and extended critical regime
- Authors: Mateusz Lisiecki, Janez Bonča, Marcin Mierzejewski, Jacek Herbrych, Patrycja Łydżba,
- Abstract summary: We show that an appropriately chosen perturbation may gradually eliminate SLIOMs (one by one) by progressively merging the fragmented subspaces.<n>Each peak signals a change in the number of SLIOMs and blocks, as well as an ultra-slow relaxation of local observables.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Systems exhibiting the Hilbert-space fragmentation are nonergodic, and their Hamiltonians decompose into exponentially many blocks in the computational basis. In many cases, these blocks can be labeled by eigenvalues of statistically localized integrals of motion (SLIOM), which play a similar role in fragmented systems as local integrals of motion in integrable systems. While a nonzero perturbation eliminates all nontrivial conserved quantities from integrable models, we demonstrate for the $t$-$J_z$ chain that an appropriately chosen perturbation may gradually eliminate SLIOMs (one by one) by progressively merging the fragmented subspaces. This gradual recovery of ergodicity manifests as an extended critical regime characterized by multiple peaks of the fidelity susceptibility. Each peak signals a change in the number of SLIOMs and blocks, as well as an ultra-slow relaxation of local observables.
Related papers
- Exact dynamics of quantum dissipative $XX$ models: Wannier-Stark localization in the fragmented operator space [49.1574468325115]
We find an exceptional point at a critical dissipation strength that separates oscillating and non-oscillating decay.
We also describe a different type of dissipation that leads to a single decay mode in the whole operator subspace.
arXiv Detail & Related papers (2024-05-27T16:11:39Z) - Flat-band induced local Hilbert space fragmentation [0.0]
We show that a class of flat-band lattices with underlying commutative local symmetries exhibit a locally fragmented Hilbert space.
We analyze the fragmentation of the one-dimensional Pyrochlore chain, which exhibits both nonintegrable sectors, effective single-particle sectors, and frozen states.
arXiv Detail & Related papers (2023-06-27T17:55:04Z) - Entanglement and localization in long-range quadratic Lindbladians [49.1574468325115]
Signatures of localization have been observed in condensed matter and cold atomic systems.
We propose a model of one-dimensional chain of non-interacting, spinless fermions coupled to a local ensemble of baths.
We show that the steady state of the system undergoes a localization entanglement phase transition by tuning $p$ which remains stable in the presence of coherent hopping.
arXiv Detail & Related papers (2023-03-13T12:45:25Z) - Localization in the random XXZ quantum spin chain [55.2480439325792]
We study the many-body localization (MBL) properties of the Heisenberg XXZ spin-$frac12$ chain in a random magnetic field.
We prove that the system exhibits localization in any given energy interval at the bottom of the spectrum in a nontrivial region of the parameter space.
arXiv Detail & Related papers (2022-10-26T17:25:13Z) - Sufficient condition for gapless spin-boson Lindbladians, and its
connection to dissipative time-crystals [64.76138964691705]
We discuss a sufficient condition for gapless excitations in the Lindbladian master equation for collective spin-boson systems.
We argue that gapless modes can lead to persistent dynamics in the spin observables with the possible formation of dissipative time-crystals.
arXiv Detail & Related papers (2022-09-26T18:34:59Z) - Local integrals of motion and the stability of many-body localisation in
Wannier-Stark potentials [0.0]
We study the form of the integrals of motion in disorder-free systems which exhibit localisation.
We show that while in the absence of interactions, the LIOMs decay faster than exponentially, the addition of interactions leads to the formation of a slow-decaying plateau at short distances.
We present evidence that adding a weak harmonic potential does not result in typical many-body localisation phenomenology.
arXiv Detail & Related papers (2022-08-30T17:51:35Z) - Decimation technique for open quantum systems: a case study with
driven-dissipative bosonic chains [62.997667081978825]
Unavoidable coupling of quantum systems to external degrees of freedom leads to dissipative (non-unitary) dynamics.
We introduce a method to deal with these systems based on the calculation of (dissipative) lattice Green's function.
We illustrate the power of this method with several examples of driven-dissipative bosonic chains of increasing complexity.
arXiv Detail & Related papers (2022-02-15T19:00:09Z) - Boundary Chaos [0.0]
Scrambling in many-body quantum systems causes initially local observables to spread uniformly over the whole available space under unitary dynamics.
We present a free quantum circuit model, in which ergodicity is induced by an impurity interaction placed on the system's boundary.
arXiv Detail & Related papers (2021-12-09T18:34:08Z) - Exact thermal properties of free-fermionic spin chains [68.8204255655161]
We focus on spin chain models that admit a description in terms of free fermions.
Errors stemming from the ubiquitous approximation are identified in the neighborhood of the critical point at low temperatures.
arXiv Detail & Related papers (2021-03-30T13:15:44Z) - Integrability of $1D$ Lindbladians from operator-space fragmentation [0.0]
We introduce families of one-dimensional Lindblad equations describing open many-particle quantum systems.
We show that Lindbladians featuring integrable operator-space fragmentation can be found in spin chains with arbitrary local physical dimension.
arXiv Detail & Related papers (2020-09-24T15:10:43Z) - Local Integrals of Motion for Topologically Ordered Many-Body Localized
Systems [0.0]
Many-body localized (MBL) systems are often described using their local integrals of motion.
We show that this assumption cannot hold for topologically ordered MBL systems.
arXiv Detail & Related papers (2020-01-09T18:55:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.