Quantum-Enhanced Parameter-Efficient Learning for Typhoon Trajectory Forecasting
- URL: http://arxiv.org/abs/2505.09395v1
- Date: Wed, 14 May 2025 13:50:44 GMT
- Title: Quantum-Enhanced Parameter-Efficient Learning for Typhoon Trajectory Forecasting
- Authors: Chen-Yu Liu, Kuan-Cheng Chen, Yi-Chien Chen, Samuel Yen-Chi Chen, Wei-Hao Huang, Wei-Jia Huang, Yen-Jui Chang,
- Abstract summary: We introduce Quantum Adaptation (QPA) for efficient typhoon forecasting model learning.<n>QPA enables parameter-efficient training while maintaining predictive accuracy.<n>This work represents the first application of quantum machine learning (QML) to large-scale typhoon trajectory prediction.
- Score: 4.150720683153208
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Typhoon trajectory forecasting is essential for disaster preparedness but remains computationally demanding due to the complexity of atmospheric dynamics and the resource requirements of deep learning models. Quantum-Train (QT), a hybrid quantum-classical framework that leverages quantum neural networks (QNNs) to generate trainable parameters exclusively during training, eliminating the need for quantum hardware at inference time. Building on QT's success across multiple domains, including image classification, reinforcement learning, flood prediction, and large language model (LLM) fine-tuning, we introduce Quantum Parameter Adaptation (QPA) for efficient typhoon forecasting model learning. Integrated with an Attention-based Multi-ConvGRU model, QPA enables parameter-efficient training while maintaining predictive accuracy. This work represents the first application of quantum machine learning (QML) to large-scale typhoon trajectory prediction, offering a scalable and energy-efficient approach to climate modeling. Our results demonstrate that QPA significantly reduces the number of trainable parameters while preserving performance, making high-performance forecasting more accessible and sustainable through hybrid quantum-classical learning.
Related papers
- TensoMeta-VQC: A Tensor-Train-Guided Meta-Learning Framework for Robust and Scalable Variational Quantum Computing [60.996803677584424]
TensoMeta-VQC is a novel tensor-train (TT)-guided meta-learning framework designed to improve the robustness and scalability of VQC significantly.<n>Our framework fully delegates the generation of quantum circuit parameters to a classical TT network, effectively decoupling optimization from quantum hardware.
arXiv Detail & Related papers (2025-08-01T23:37:55Z) - VQC-MLPNet: An Unconventional Hybrid Quantum-Classical Architecture for Scalable and Robust Quantum Machine Learning [60.996803677584424]
Variational Quantum Circuits (VQCs) offer a novel pathway for quantum machine learning.<n>Their practical application is hindered by inherent limitations such as constrained linear expressivity, optimization challenges, and acute sensitivity to quantum hardware noise.<n>This work introduces VQC-MLPNet, a scalable and robust hybrid quantum-classical architecture designed to overcome these obstacles.
arXiv Detail & Related papers (2025-06-12T01:38:15Z) - Hybrid Quantum Recurrent Neural Network For Remaining Useful Life Prediction [67.410870290301]
We introduce a Hybrid Quantum Recurrent Neural Network framework, combining Quantum Long Short-Term Memory layers with classical dense layers for Remaining Useful Life forecasting.<n> Experimental results demonstrate that, despite having fewer trainable parameters, the Hybrid Quantum Recurrent Neural Network achieves up to a 5% improvement over a Recurrent Neural Network.
arXiv Detail & Related papers (2025-04-29T14:41:41Z) - Quantum-Assisted Machine Learning Models for Enhanced Weather Prediction [0.8458496687170665]
Quantum Machine Learning (QML) presents as a revolutionary approach to weather forecasting by using quantum computing to improve predictive modeling capabilities.<n>In this study, we apply QML models, including Quantum Gated Recurrent Units (QGRUs), Quantum Neural Networks (QNNs), Quantum Long Short-Term Memory(QLSTM), Variational Quantum Circuits(VQCs), and Quantum Support Vector Machines(QSVMs)<n>Results demonstrate that QML models can achieve reasonable accuracy in both prediction and classification tasks, particularly in binary classification.<n>This research provides insights into the feasibility of QML for weather prediction, paving
arXiv Detail & Related papers (2025-03-30T12:03:27Z) - A Quantum Neural Network Transfer-Learning Model for Forecasting Problems with Continuous and Discrete Variables [0.0]
This study introduces simple yet effective continuous- and discrete-variable quantum neural network (QNN) models as a transfer-learning approach for forecasting tasks.<n>The CV-QNN features a single quantum layer with two qubits to establish entanglement and utilizes a minimal set of quantum gates.<n>The model's frozen parameters are successfully applied to various forecasting tasks, including energy consumption, traffic flow, weather conditions, and cryptocurrency price prediction.
arXiv Detail & Related papers (2025-03-04T22:38:51Z) - Data re-uploading in Quantum Machine Learning for time series: application to traffic forecasting [1.2885961238169932]
We present the first application of quantum data re-uploading in the context of transport forecasting.<n>This technique allows quantum models to better capture complex patterns, such as traffic dynamics, by repeatedly encoding classical data into a quantum state.<n>Our results show that hybrid models achieve competitive accuracy with state-of-the-art classical methods, especially when the number of qubits and re-uploading blocks is increased.
arXiv Detail & Related papers (2025-01-22T10:21:00Z) - Quantum Kernel-Based Long Short-term Memory for Climate Time-Series Forecasting [0.24739484546803336]
We present the Quantum Kernel-Based Long short-memory (QK-LSTM) network, which integrates quantum kernel methods into classical LSTM architectures.<n>QK-LSTM captures intricate nonlinear dependencies and temporal dynamics with fewer trainable parameters.
arXiv Detail & Related papers (2024-12-12T01:16:52Z) - Leveraging Pre-Trained Neural Networks to Enhance Machine Learning with Variational Quantum Circuits [48.33631905972908]
We introduce an innovative approach that utilizes pre-trained neural networks to enhance Variational Quantum Circuits (VQC)
This technique effectively separates approximation error from qubit count and removes the need for restrictive conditions.
Our results extend to applications such as human genome analysis, demonstrating the broad applicability of our approach.
arXiv Detail & Related papers (2024-11-13T12:03:39Z) - Quantum-Train Long Short-Term Memory: Application on Flood Prediction Problem [0.8192907805418583]
This study applies the Quantum-Train (QT) technique to a forecasting Long Short-Term Memory (LSTM) model trained by Quantum Machine Learning (QML)
The QT technique, originally successful in the A Matter of Taste challenge at QHack 2024, leverages QML to reduce the number of trainable parameters to a polylogarithmic function of the number of parameters in a classical neural network (NN)
Our approach directly processes classical data without the need for quantum embedding and operates independently of quantum computing resources post-training.
arXiv Detail & Related papers (2024-07-11T15:56:00Z) - Quantum-Train: Rethinking Hybrid Quantum-Classical Machine Learning in the Model Compression Perspective [7.7063925534143705]
We introduce the Quantum-Train(QT) framework, a novel approach that integrates quantum computing with machine learning algorithms.
QT achieves remarkable results by employing a quantum neural network alongside a classical mapping model.
arXiv Detail & Related papers (2024-05-18T14:35:57Z) - QKSAN: A Quantum Kernel Self-Attention Network [53.96779043113156]
A Quantum Kernel Self-Attention Mechanism (QKSAM) is introduced to combine the data representation merit of Quantum Kernel Methods (QKM) with the efficient information extraction capability of SAM.
A Quantum Kernel Self-Attention Network (QKSAN) framework is proposed based on QKSAM, which ingeniously incorporates the Deferred Measurement Principle (DMP) and conditional measurement techniques.
Four QKSAN sub-models are deployed on PennyLane and IBM Qiskit platforms to perform binary classification on MNIST and Fashion MNIST.
arXiv Detail & Related papers (2023-08-25T15:08:19Z) - PreQuant: A Task-agnostic Quantization Approach for Pre-trained Language
Models [52.09865918265002]
We propose a novel quantize before fine-tuning'' framework, PreQuant.
PreQuant is compatible with various quantization strategies, with outlier-aware fine-tuning incorporated to correct the induced quantization error.
We demonstrate the effectiveness of PreQuant on the GLUE benchmark using BERT, RoBERTa, and T5.
arXiv Detail & Related papers (2023-05-30T08:41:33Z) - Pre-training Tensor-Train Networks Facilitates Machine Learning with Variational Quantum Circuits [70.97518416003358]
Variational quantum circuits (VQCs) hold promise for quantum machine learning on noisy intermediate-scale quantum (NISQ) devices.
While tensor-train networks (TTNs) can enhance VQC representation and generalization, the resulting hybrid model, TTN-VQC, faces optimization challenges due to the Polyak-Lojasiewicz (PL) condition.
To mitigate this challenge, we introduce Pre+TTN-VQC, a pre-trained TTN model combined with a VQC.
arXiv Detail & Related papers (2023-05-18T03:08:18Z) - Synergy Between Quantum Circuits and Tensor Networks: Short-cutting the
Race to Practical Quantum Advantage [43.3054117987806]
We introduce a scalable procedure for harnessing classical computing resources to provide pre-optimized initializations for quantum circuits.
We show this method significantly improves the trainability and performance of PQCs on a variety of problems.
By demonstrating a means of boosting limited quantum resources using classical computers, our approach illustrates the promise of this synergy between quantum and quantum-inspired models in quantum computing.
arXiv Detail & Related papers (2022-08-29T15:24:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.