論文の概要: LightLab: Controlling Light Sources in Images with Diffusion Models
- arxiv url: http://arxiv.org/abs/2505.09608v1
- Date: Wed, 14 May 2025 17:57:27 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-15 21:44:09.558852
- Title: LightLab: Controlling Light Sources in Images with Diffusion Models
- Title(参考訳): LightLab: 拡散モデルによる画像中の光源の制御
- Authors: Nadav Magar, Amir Hertz, Eric Tabellion, Yael Pritch, Alex Rav-Acha, Ariel Shamir, Yedid Hoshen,
- Abstract要約: 画像中の光源を微細かつパラメトリックに制御する拡散法を提案する。
我々は、光の線形性を利用して、ターゲット光源または周囲照明の制御された光の変化を描写した画像対を合成する。
提案手法は, ユーザの好みに基づいて, 従来の方法よりも優れた光編集結果が得られることを示す。
- 参考スコア(独自算出の注目度): 49.83835236202516
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a simple, yet effective diffusion-based method for fine-grained, parametric control over light sources in an image. Existing relighting methods either rely on multiple input views to perform inverse rendering at inference time, or fail to provide explicit control over light changes. Our method fine-tunes a diffusion model on a small set of real raw photograph pairs, supplemented by synthetically rendered images at scale, to elicit its photorealistic prior for relighting. We leverage the linearity of light to synthesize image pairs depicting controlled light changes of either a target light source or ambient illumination. Using this data and an appropriate fine-tuning scheme, we train a model for precise illumination changes with explicit control over light intensity and color. Lastly, we show how our method can achieve compelling light editing results, and outperforms existing methods based on user preference.
- Abstract(参考訳): 画像中の光源を微粒かつパラメトリックに制御するための,単純かつ効果的な拡散法を提案する。
既存のrelightingメソッドは、推論時に逆レンダリングを行うために複数の入力ビューに依存するか、光の変化を明示的に制御できないかのいずれかである。
提案手法は,合成合成画像で補足した少数の生写真対に拡散モデルを微調整し,その光写実性を引き出す方法である。
我々は、光の線形性を利用して、ターゲット光源または周囲照明の制御された光の変化を描写した画像対を合成する。
このデータと適切な微調整方式を用いて、光強度と色を明示的に制御した正確な照明変化のモデルを訓練する。
最後に,提案手法が光編集結果の獲得にどう役立つかを示し,ユーザの好みに基づいて既存手法よりも優れていることを示す。
関連論文リスト
- LightIt: Illumination Modeling and Control for Diffusion Models [61.80461416451116]
我々は、画像生成のための明示的な照明制御方法であるLightItを紹介する。
最近の生成法では照明制御が欠如しており、画像生成の多くの芸術的側面に不可欠である。
本手法は、制御可能で一貫した照明による画像生成を可能にする最初の方法である。
論文 参考訳(メタデータ) (2024-03-15T18:26:33Z) - DiLightNet: Fine-grained Lighting Control for Diffusion-based Image Generation [16.080481761005203]
テキスト駆動画像生成における微細な照明制御を実現するための新しい手法を提案する。
私たちのキーとなる観察は、拡散過程を導くだけではならず、そのため正確な放射率のヒントは必要ないということです。
我々は、様々なテキストプロンプトと照明条件に基づいて、照明制御拡散モデルを実証し、検証する。
論文 参考訳(メタデータ) (2024-02-19T08:17:21Z) - Relightful Harmonization: Lighting-aware Portrait Background Replacement [23.19641174787912]
背景画像を用いた背景像に対する高度な照明効果をシームレスに調和させるライティング対応拡散モデルであるRelightful Harmonizationを導入する。
まず、拡散モデルを用いて、対象画像の背景から照明情報をエンコードする照明表現モジュールを導入する。
第2に、画像背景から学習した照明特徴と、パノラマ環境マップから学習した照明特徴とを整列するアライメントネットワークを導入する。
論文 参考訳(メタデータ) (2023-12-11T23:20:31Z) - Dimma: Semi-supervised Low Light Image Enhancement with Adaptive Dimming [0.728258471592763]
自然色を維持しながら低照度画像を強調することは、カメラ処理のバリエーションによって難しい問題である。
そこで我々はDimmaを提案する。Dimmaは、画像対の小さなセットを利用して、任意のカメラと整合する半教師付きアプローチである。
そこで我々は,照明の違いに基づいて,シーンの歪み色を生成する畳み込み混合密度ネットワークを導入することで実現した。
論文 参考訳(メタデータ) (2023-10-14T17:59:46Z) - Improving Lens Flare Removal with General Purpose Pipeline and Multiple
Light Sources Recovery [69.71080926778413]
フレアアーティファクトは、画像の視覚的品質と下流のコンピュータビジョンタスクに影響を与える。
現在の方法では、画像信号処理パイプラインにおける自動露光やトーンマッピングは考慮されていない。
本稿では、ISPを再検討し、より信頼性の高い光源回収戦略を設計することで、レンズフレア除去性能を向上させるソリューションを提案する。
論文 参考訳(メタデータ) (2023-08-31T04:58:17Z) - Relighting Images in the Wild with a Self-Supervised Siamese
Auto-Encoder [62.580345486483886]
本研究では,野生の単一ビュー画像の自己教師付きリライティング手法を提案する。
この方法は、イメージを2つの別々のエンコーディングに分解するオートエンコーダに基づいている。
Youtube 8MやCelebAなどの大規模データセットでモデルをトレーニングします。
論文 参考訳(メタデータ) (2020-12-11T16:08:50Z) - Light Stage Super-Resolution: Continuous High-Frequency Relighting [58.09243542908402]
光ステージから採取した人間の顔の「超解像」を学習ベースで解析する手法を提案する。
本手法では,ステージ内の隣接する照明に対応する撮像画像を集約し,ニューラルネットワークを用いて顔の描画を合成する。
我々の学習モデルは、リアルな影と特異なハイライトを示す任意の光方向のレンダリングを生成することができる。
論文 参考訳(メタデータ) (2020-10-17T23:40:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。