論文の概要: Study and improvement of search algorithms in two-players perfect information games
- arxiv url: http://arxiv.org/abs/2505.09639v1
- Date: Tue, 06 May 2025 19:29:59 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-16 22:29:06.025075
- Title: Study and improvement of search algorithms in two-players perfect information games
- Title(参考訳): 2プレイヤー完全情報ゲームにおける探索アルゴリズムの研究と改善
- Authors: Quentin Cohen-Solal,
- Abstract要約: 完全情報を持つ2プレイヤーゼロサムゲームの新しい探索アルゴリズムを提案する。
短い検索期間で、この大規模な実験では、すべてのゲームで研究対象のアルゴリズムを上回ります。
また,中程度の検索時間では,22ゲーム中17ゲームにおいて,すべての学習アルゴリズムを上回ります。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Games, in their mathematical sense, are everywhere (game industries, economics, defense, education, chemistry, biology, ...).Search algorithms in games are artificial intelligence methods for playing such games. Unfortunately, there is no study on these algorithms that evaluates the generality of their performance. We propose to address this gap in the case of two-player zero-sum games with perfect information. Furthermore, we propose a new search algorithm and we show that, for a short search time, it outperforms all studied algorithms on all games in this large experiment and that, for a medium search time, it outperforms all studied algorithms on 17 of the 22 studied games.
- Abstract(参考訳): 数学的な意味では、ゲームは至る所にある(ゲーム産業、経済学、防衛、教育、化学、生物学、...)。
ゲームにおける探索アルゴリズムは、そのようなゲームをするための人工知能の手法である。
残念なことに、これらのアルゴリズムはそれらの性能の一般性を評価するものではない。
完全情報を持つ2プレイヤーゼロサムゲームにおいて,このギャップに対処することを提案する。
さらに,新たな探索アルゴリズムを提案し,短時間で,この大実験において全ゲームで学習したアルゴリズムを上回り,中程度の探索時間では,22ゲーム中17ゲームで学習したアルゴリズムを上回ります。
関連論文リスト
- People use fast, goal-directed simulation to reason about novel games [71.0171482296852]
シンプルなが斬新なConnect-Nスタイルのボードゲームについて、人々がどう考えるかを研究する。
ゲームがどんなに公平か、そしてどんなに楽しいのかを、ごくわずかな経験から判断するよう、私たちは人々に求めます。
論文 参考訳(メタデータ) (2024-07-19T07:59:04Z) - The Update-Equivalence Framework for Decision-Time Planning [78.44953498421854]
本稿では,サブゲームの解決ではなく,更新等価性に基づく意思決定時計画のための代替フレームワークを提案する。
ミラー降下に基づく完全協調型ゲームに対する有効音声探索アルゴリズムと、磁気ミラー降下に基づく対戦型ゲームに対する探索アルゴリズムを導出する。
論文 参考訳(メタデータ) (2023-04-25T20:28:55Z) - Learning to Play Stochastic Two-player Perfect-Information Games without
Knowledge [5.071342645033634]
我々はDescentフレームワークを拡張し、完全な情報を持つ2人プレイヤゲームのコンテキストにおける学習と計画を可能にする。
我々は、最先端のアルゴリズムに対してEin wurfelt!で評価する。
最良の結果を得るのはDescentの一般化である。
論文 参考訳(メタデータ) (2023-02-08T20:27:45Z) - No-Regret Learning in Time-Varying Zero-Sum Games [99.86860277006318]
固定ゼロサムゲームにおける繰り返しプレイからの学習は、ゲーム理論とオンライン学習における古典的な問題である。
提案手法は,3つの性能基準の下で,良好な保証を同時に享受できる1つのパラメータフリーアルゴリズムである。
本アルゴリズムは,ある特性を満たすブラックボックスベースラーナー群に対するメタアルゴリズムを用いた2層構造に基づく。
論文 参考訳(メタデータ) (2022-01-30T06:10:04Z) - Revisiting Game Representations: The Hidden Costs of Efficiency in
Sequential Decision-making Algorithms [0.6749750044497732]
不完全な情報の下でのシーケンシャルな意思決定アルゴリズムの進歩は、大きなゲームで顕著な成功を収めている。
これらのアルゴリズムは伝統的に広義のゲーム形式を用いてゲームを形式化する。
プレイヤー固有の情報状態木に基づく特殊表現の使用が,一般的な回避策であることを示す。
論文 参考訳(メタデータ) (2021-12-20T22:34:19Z) - Student of Games: A unified learning algorithm for both perfect and
imperfect information games [22.97853623156316]
Students of Gamesは、ガイド付き検索、自己学習、ゲーム理論推論を組み合わせたアルゴリズムである。
学生ゲームは,計算能力と近似能力が増大するにつれて,完全プレイに収束し,健全であることを示す。
学生はチェスと囲碁で強い成績を収め、無期限のテキサスホールディングスのポーカーで最強の公開エージェントを破り、スコットランドヤードで最先端のエージェントを倒した。
論文 参考訳(メタデータ) (2021-12-06T17:16:24Z) - Generating Diverse and Competitive Play-Styles for Strategy Games [58.896302717975445]
ターン型戦略ゲーム(Tribes)のためのプログレッシブアンプランによるPortfolio Monte Carlo Tree Searchを提案する。
品質分散アルゴリズム(MAP-Elites)を使用して異なるプレイスタイルを実現し、競争レベルを維持しながらパラメータ化する方法を示します。
その結果,このアルゴリズムは,トレーニングに用いるレベルを超えて,幅広いゲームレベルにおいても,これらの目標を達成できることが示された。
論文 参考訳(メタデータ) (2021-04-17T20:33:24Z) - Efficient exploration of zero-sum stochastic games [83.28949556413717]
ゲームプレイを通じて,ゲームの記述を明示せず,託宣のみにアクセス可能な,重要で一般的なゲーム解決環境について検討する。
限られたデュレーション学習フェーズにおいて、アルゴリズムは両方のプレイヤーのアクションを制御し、ゲームを学習し、それをうまくプレイする方法を学習する。
私たちのモチベーションは、クエリされた戦略プロファイルの支払いを評価するのにコストがかかる状況において、利用可能性の低い戦略を迅速に学習することにあります。
論文 参考訳(メタデータ) (2020-02-24T20:30:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。