論文の概要: Causal Predictive Optimization and Generation for Business AI
- arxiv url: http://arxiv.org/abs/2505.09847v2
- Date: Wed, 21 May 2025 16:12:30 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-22 13:19:52.298939
- Title: Causal Predictive Optimization and Generation for Business AI
- Title(参考訳): ビジネスAIの因果予測最適化と生成
- Authors: Liyang Zhao, Olurotimi Seton, Himadeep Reddy Reddivari, Suvendu Jena, Shadow Zhao, Rachit Kumar, Changshuai Wei,
- Abstract要約: 本稿では,営業最適化とビジネスAI,すなわちCausal Predictive Optimization and Generationへの原則的アプローチを紹介する。
我々は、LinkedInにおけるシステムの実装とデプロイについて詳述し、レガシーシステムに対する大きな勝利を示し、この分野に適用可能な学習と洞察を共有する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The sales process involves sales functions converting leads or opportunities to customers and selling more products to existing customers. The optimization of the sales process thus is key to success of any B2B business. In this work, we introduce a principled approach to sales optimization and business AI, namely the Causal Predictive Optimization and Generation, which includes three layers: 1) prediction layer with causal ML 2) optimization layer with constraint optimization and contextual bandit 3) serving layer with Generative AI and feedback-loop for system enhancement. We detail the implementation and deployment of the system in LinkedIn, showcasing significant wins over legacy systems and sharing learning and insight broadly applicable to this field.
- Abstract(参考訳): 販売プロセスには、リードや機会を顧客に変換し、より多くの製品を既存の顧客に販売する販売機能が含まれる。
したがって、販売プロセスの最適化は、B2Bビジネスの成功の鍵となる。
本稿では,販売最適化とビジネスAI,すなわちCausal Predictive Optimization and Generationの原則的アプローチを紹介する。
1)因果MLを用いた予測層
2)制約最適化と文脈帯域幅を有する最適化層
3) システム拡張のための生成AIとフィードバックループを備えたサービス層。
我々は、LinkedInにおけるシステムの実装とデプロイについて詳述し、レガシーシステムに対する大きな勝利を示し、この分野に適用可能な学習と洞察を共有する。
関連論文リスト
- ORMind: A Cognitive-Inspired End-to-End Reasoning Framework for Operations Research [53.736407871322314]
ORMindは認知にインスパイアされたフレームワークで、反ファクト推論を通じて最適化を強化する。
提案手法は,要求を数学的モデルや実行可能なコードに変換するエンド・ツー・エンドのワークフローを実装し,人間の認識をエミュレートする。
現在はLenovoのAIアシスタントで内部でテストされており、ビジネスとコンシューマの両方の最適化機能を強化する予定である。
論文 参考訳(メタデータ) (2025-06-02T05:11:21Z) - DARS: Dynamic Action Re-Sampling to Enhance Coding Agent Performance by Adaptive Tree Traversal [55.13854171147104]
大規模言語モデル(LLM)は、自然言語処理、データ分析、ソフトウェア開発など、さまざまな領域に革命をもたらした。
符号化エージェントのための新しい推論時間計算スケーリングアプローチである動的アクション再サンプリング(DARS)を提案する。
我々は、SWE-Bench Liteベンチマークに対する我々のアプローチを評価し、このスケーリング戦略がClude 3.5 Sonnet V2で55%のパス@kスコアを達成したことを実証した。
論文 参考訳(メタデータ) (2025-03-18T14:02:59Z) - A Survey on Inference Optimization Techniques for Mixture of Experts Models [50.40325411764262]
大規模Mixture of Experts(MoE)モデルは、条件計算によるモデル容量と計算効率の向上を提供する。
これらのモデル上で推論をデプロイし実行することは、計算資源、レイテンシ、エネルギー効率において大きな課題を示す。
本調査では,システムスタック全体にわたるMoEモデルの最適化手法について分析する。
論文 参考訳(メタデータ) (2024-12-18T14:11:15Z) - Enhancing the Reasoning Ability of Multimodal Large Language Models via Mixed Preference Optimization [65.64108848398696]
我々は、MLLMのマルチモーダル推論能力を高めるために、選好最適化(PO)プロセスを導入する。
具体的には、自動選好データ構築パイプラインを設計し、高品質で大規模なマルチモーダル推論選好データセットであるMMPRを作成する。
マルチモーダルCoT性能を向上するMPO(Mixed Preference Optimization)と呼ばれるシンプルな手法を開発した。
論文 参考訳(メタデータ) (2024-11-15T18:59:27Z) - Optima: Optimizing Effectiveness and Efficiency for LLM-Based Multi-Agent System [75.25394449773052]
大規模言語モデル (LLM) に基づくマルチエージェントシステム (MAS) は協調的問題解決において顕著な可能性を示している。
通信効率の低下、スケーラビリティの低下、効果的なパラメータ更新方法の欠如などです。
本稿では,コミュニケーション効率とタスク効率を両立させ,これらの課題に対処する新しいフレームワークOptimaを提案する。
論文 参考訳(メタデータ) (2024-10-10T17:00:06Z) - End-to-End Cost-Effective Incentive Recommendation under Budget Constraint with Uplift Modeling [12.160403526724476]
本稿では,予算制約下でのエンド・ツー・エンド・エンド・コスト・エフェクティブ・インセンティブ・レコメンデーション(E3IR)モデルを提案する。
具体的には、アップリフト予測モジュールと微分可能なアロケーションモジュールの2つのモジュールから構成される。
E3IRは既存の2段階アプローチに比べてアロケーション性能が向上する。
論文 参考訳(メタデータ) (2024-08-21T13:48:00Z) - Neural Optimization with Adaptive Heuristics for Intelligent Marketing System [1.3079444139643954]
本稿では,AIシステムのマーケティングのための一般的なフレームワークとして,適応ヒューリスティックス(Noah)フレームワークを用いたニューラル最適化を提案する。
Noahは2B(to-business)と2C(to-consumer)の両方の製品と、所有チャンネルと有償チャネルを考慮に入れた、マーケティング最適化のための最初の一般的なフレームワークである。
我々は、予測、最適化、適応的なオーディエンスを含むNoahフレームワークの重要なモジュールを説明し、入札とコンテンツ最適化の例を提供する。
論文 参考訳(メタデータ) (2024-05-17T01:44:30Z) - LMaaS: Exploring Pricing Strategy of Large Model as a Service for
Communication [11.337245234301857]
有料サービスモードは、LM(Large Model as a Service)と呼ばれるこの文脈に適していると我々は主張する。
本稿では,顧客の将来的なレンタル決定を推論することで,大規模モデルの価格を反復的に最適化する反復モデル価格(IMP)アルゴリズムを提案する。
第2ステップでは、ロバストな選択とレンタルのアルゴリズムを設計することで、顧客の選択決定を最適化する。
論文 参考訳(メタデータ) (2024-01-05T07:19:19Z) - Benchmarking PtO and PnO Methods in the Predictive Combinatorial Optimization Regime [59.27851754647913]
予測最適化(英: Predictive optimization)は、エネルギーコストを意識したスケジューリングや広告予算配分など、多くの現実世界のアプリケーションの正確なモデリングである。
我々は,広告のための新しい産業データセットを含む8つの問題に対して,既存のPtO/PnOメソッド11をベンチマークするモジュラーフレームワークを開発した。
本研究は,8ベンチマーク中7ベンチマークにおいて,PnOアプローチがPtOよりも優れていることを示すが,PnOの設計選択に銀の弾丸は見つからない。
論文 参考訳(メタデータ) (2023-11-13T13:19:34Z) - Model-based Causal Bayesian Optimization [74.78486244786083]
乗算重み付き因果ベイズ最適化のための最初のアルゴリズム(CBO-MW)を提案する。
グラフ関連の量に自然に依存するCBO-MWに対する後悔の限界を導出する。
我々の実験は、共有モビリティシステムにおいて、ユーザの需要パターンを学習するためにCBO-MWをどのように使用できるかの現実的なデモを含む。
論文 参考訳(メタデータ) (2023-07-31T13:02:36Z) - A framework for massive scale personalized promotion [18.12992386307048]
消費者向けプラットフォームを構築するテクノロジー企業は、大規模なユーザー人口にアクセスできるかもしれない。
定量化インセンティブによるプロモーションは、このようなプラットフォーム上でアクティブユーザを増やすための一般的なアプローチとなっている。
本稿では,大規模プロモーションキャンペーンのROIを最適化する実用的な2段階フレームワークを提案する。
論文 参考訳(メタデータ) (2021-08-27T03:03:18Z) - A Generalized Flow for B2B Sales Predictive Modeling: An Azure Machine
Learning Approach [0.0]
ビジネス・トゥ・ビジネス(B2B)の売上の予測はビジネス・マネジメントの成功の中核をなす。
クラウドベースのコンピューティングプラットフォームであるMicrosoft Azure ML上でのデータ駆動機械学習(ML)ワークフローを提案する。
その結果、ML予測に基づく意思決定はより正確であり、より高い金融価値をもたらすことが示唆された。
論文 参考訳(メタデータ) (2020-02-04T18:01:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。