Large-Scale Gaussian Splatting SLAM
- URL: http://arxiv.org/abs/2505.09915v1
- Date: Thu, 15 May 2025 03:00:32 GMT
- Title: Large-Scale Gaussian Splatting SLAM
- Authors: Zhe Xin, Chenyang Wu, Penghui Huang, Yanyong Zhang, Yinian Mao, Guoquan Huang,
- Abstract summary: This paper introduces a large-scale 3DGS-based visual SLAM with stereo cameras, termed LSG-SLAM.<n>With extensive evaluations on the EuRoc and KITTI datasets, LSG-SLAM achieves superior performance over existing Neural, 3DGS-based, and even traditional approaches.
- Score: 21.253966057320383
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The recently developed Neural Radiance Fields (NeRF) and 3D Gaussian Splatting (3DGS) have shown encouraging and impressive results for visual SLAM. However, most representative methods require RGBD sensors and are only available for indoor environments. The robustness of reconstruction in large-scale outdoor scenarios remains unexplored. This paper introduces a large-scale 3DGS-based visual SLAM with stereo cameras, termed LSG-SLAM. The proposed LSG-SLAM employs a multi-modality strategy to estimate prior poses under large view changes. In tracking, we introduce feature-alignment warping constraints to alleviate the adverse effects of appearance similarity in rendering losses. For the scalability of large-scale scenarios, we introduce continuous Gaussian Splatting submaps to tackle unbounded scenes with limited memory. Loops are detected between GS submaps by place recognition and the relative pose between looped keyframes is optimized utilizing rendering and feature warping losses. After the global optimization of camera poses and Gaussian points, a structure refinement module enhances the reconstruction quality. With extensive evaluations on the EuRoc and KITTI datasets, LSG-SLAM achieves superior performance over existing Neural, 3DGS-based, and even traditional approaches. Project page: https://lsg-slam.github.io.
Related papers
- TVG-SLAM: Robust Gaussian Splatting SLAM with Tri-view Geometric Constraints [22.121665995381324]
TVG-SLAM is a robust RGB-only 3DGS SLAM system that leverages a novel tri-view geometry paradigm to ensure consistent tracking and high-quality mapping.<n>Our method improves tracking robustness, reducing the average Absolute Trajectory Error (ATE) by 69.0% while achieving state-of-the-art rendering quality.
arXiv Detail & Related papers (2025-06-29T12:31:05Z) - LODGE: Level-of-Detail Large-Scale Gaussian Splatting with Efficient Rendering [68.93333348474988]
We present a novel level-of-detail (LOD) method for 3D Gaussian Splatting on memory-constrained devices.<n>Our approach iteratively selects optimal subsets of Gaussians based on camera distance.<n>Our method achieves state-of-the-art performance on both outdoor (Hierarchical 3DGS) and indoor (Zip-NeRF) datasets.
arXiv Detail & Related papers (2025-05-29T06:50:57Z) - Intern-GS: Vision Model Guided Sparse-View 3D Gaussian Splatting [95.61137026932062]
Intern-GS is a novel approach to enhance the process of sparse-view Gaussian splatting.<n>We show that Intern-GS achieves state-of-the-art rendering quality across diverse datasets.
arXiv Detail & Related papers (2025-05-27T05:17:49Z) - Steepest Descent Density Control for Compact 3D Gaussian Splatting [72.54055499344052]
3D Gaussian Splatting (3DGS) has emerged as a powerful real-time, high-resolution novel view.<n>We propose a theoretical framework that demystifies and improves density control in 3DGS.<n>We introduce SteepGS, incorporating steepest density control, a principled strategy that minimizes loss while maintaining a compact point cloud.
arXiv Detail & Related papers (2025-05-08T18:41:38Z) - GigaSLAM: Large-Scale Monocular SLAM with Hierachical Gaussian Splats [30.608403266769788]
We introduce GigaSLAM, the first NeRF/3DGS-based SLAM framework for large-scale, unbounded outdoor environments.<n>Our approach employs a hierarchical sparse voxel map representation, where Gaussians are decoded by neural networks at multiple levels of detail.<n>GigaSLAM delivers high-precision tracking and visually faithful rendering on urban outdoor benchmarks.
arXiv Detail & Related papers (2025-03-11T06:05:15Z) - GSplatLoc: Grounding Keypoint Descriptors into 3D Gaussian Splatting for Improved Visual Localization [1.4466437171584356]
We propose a two-stage procedure that integrates dense and robust keypoint descriptors from the lightweight XFeat feature extractor into 3DGS.<n>In the second stage, the initial pose estimate is refined by minimizing the rendering-based photometric warp loss.<n> Benchmarking on widely used indoor and outdoor datasets demonstrates improvements over recent neural rendering-based localization methods.
arXiv Detail & Related papers (2024-09-24T23:18:32Z) - IG-SLAM: Instant Gaussian SLAM [6.228980850646457]
3D Gaussian Splatting has recently shown promising results as an alternative scene representation in SLAM systems.
We present IG-SLAM, a dense RGB-only SLAM system that employs robust Dense-SLAM methods for tracking and combines them with Gaussian Splatting.
We demonstrate competitive performance with state-of-the-art RGB-only SLAM systems while achieving faster operation speeds.
arXiv Detail & Related papers (2024-08-02T09:07:31Z) - MotionGS : Compact Gaussian Splatting SLAM by Motion Filter [10.979138131565238]
There has been a surge in NeRF-based SLAM, while 3DGS-based SLAM is sparse.
A novel 3DGS-based SLAM approach with a fusion of deep visual feature, dual selection and 3DGS is presented in this paper.
arXiv Detail & Related papers (2024-05-18T00:47:29Z) - GES: Generalized Exponential Splatting for Efficient Radiance Field Rendering [112.16239342037714]
GES (Generalized Exponential Splatting) is a novel representation that employs Generalized Exponential Function (GEF) to model 3D scenes.
With the aid of a frequency-modulated loss, GES achieves competitive performance in novel-view synthesis benchmarks.
arXiv Detail & Related papers (2024-02-15T17:32:50Z) - GS-IR: 3D Gaussian Splatting for Inverse Rendering [71.14234327414086]
We propose GS-IR, a novel inverse rendering approach based on 3D Gaussian Splatting (GS)
We extend GS, a top-performance representation for novel view synthesis, to estimate scene geometry, surface material, and environment illumination from multi-view images captured under unknown lighting conditions.
The flexible and expressive GS representation allows us to achieve fast and compact geometry reconstruction, photorealistic novel view synthesis, and effective physically-based rendering.
arXiv Detail & Related papers (2023-11-26T02:35:09Z) - GS-SLAM: Dense Visual SLAM with 3D Gaussian Splatting [51.96353586773191]
We introduce textbfGS-SLAM that first utilizes 3D Gaussian representation in the Simultaneous Localization and Mapping system.
Our method utilizes a real-time differentiable splatting rendering pipeline that offers significant speedup to map optimization and RGB-D rendering.
Our method achieves competitive performance compared with existing state-of-the-art real-time methods on the Replica, TUM-RGBD datasets.
arXiv Detail & Related papers (2023-11-20T12:08:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.