Rethinking Prompt Optimizers: From Prompt Merits to Optimization
- URL: http://arxiv.org/abs/2505.09930v2
- Date: Tue, 20 May 2025 11:48:05 GMT
- Title: Rethinking Prompt Optimizers: From Prompt Merits to Optimization
- Authors: Zixiao Zhu, Hanzhang Zhou, Zijian Feng, Tianjiao Li, Chua Jia Jim Deryl, Mak Lee Onn, Gee Wah Ng, Kezhi Mao,
- Abstract summary: We introduce MePO, a merit-guided, lightweight, locally deployable prompt training dataset built from merit-aligned prompts.<n>MePO avoids online optimization, reduces cost and privacy concerns, and, by learning clear, interpretable merits, generalizes effectively to both large-scale and lightweight inference models.
- Score: 14.01541576309104
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Prompt optimization (PO) provides a practical way to improve response quality when users lack the time or expertise to manually craft effective prompts. Existing methods typically rely on advanced, large-scale LLMs like GPT-4 to generate optimized prompts. However, due to limited downward compatibility, verbose, instruction-heavy prompts from advanced LLMs can overwhelm lightweight inference models and degrade response quality. In this work, we rethink prompt optimization through the lens of interpretable design. We first identify a set of model-agnostic prompt quality merits and empirically validate their effectiveness in enhancing prompt and response quality. We then introduce MePO, a merit-guided, lightweight, and locally deployable prompt optimizer trained on our preference dataset built from merit-aligned prompts generated by a lightweight LLM. Unlike prior work, MePO avoids online optimization reliance, reduces cost and privacy concerns, and, by learning clear, interpretable merits, generalizes effectively to both large-scale and lightweight inference models. Experiments demonstrate that MePO achieves better results across diverse tasks and model types, offering a scalable and robust solution for real-world deployment. The code and dataset can be found in https://github.com/MidiyaZhu/MePO
Related papers
- ORPP: Self-Optimizing Role-playing Prompts to Enhance Language Model Capabilities [64.24517317344959]
High-quality prompts are crucial for eliciting outstanding performance from large language models on complex tasks.<n>We propose ORPP, a framework that enhances model performance by optimizing and generating role-playing prompts.<n>We show that ORPP not only matches but in most cases surpasses existing mainstream prompt optimization methods in terms of performance.
arXiv Detail & Related papers (2025-06-03T05:51:35Z) - GREATERPROMPT: A Unified, Customizable, and High-Performing Open-Source Toolkit for Prompt Optimization [8.0977414944195]
We introduce GREATERPROMPT, a novel framework that democratizes prompt optimization by unifying diverse methods under a unified, customizable API.<n>Our framework flexibly accommodates various model scales by leveraging both text feedback-based optimization for larger LLMs and internal gradient-based optimization for smaller models.
arXiv Detail & Related papers (2025-04-04T22:36:55Z) - Align-Pro: A Principled Approach to Prompt Optimization for LLM Alignment [40.71270945505082]
Large language models (LLMs) are increasingly integrated into various societal and decision-making processes.<n>Traditional methods, such as reinforcement learning from human feedback (RLHF), achieve alignment by fine-tuning model parameters.<n>In contrast, prompt optimization is a viable alternative to RLHF for LLM alignment.
arXiv Detail & Related papers (2025-01-07T03:14:39Z) - GReaTer: Gradients over Reasoning Makes Smaller Language Models Strong Prompt Optimizers [52.17222304851524]
We introduce GReaTer, a novel prompt optimization technique that directly incorporates gradient information over task-specific reasoning.<n>By utilizing task loss gradients, GReaTer enables self-optimization of prompts for open-source, lightweight language models.<n> GReaTer consistently outperforms previous state-of-the-art prompt optimization methods.
arXiv Detail & Related papers (2024-12-12T20:59:43Z) - IPO: Interpretable Prompt Optimization for Vision-Language Models [40.83071220530289]
This paper introduces a simple but interpretable prompt (IPO)
IPO utilizes large language models (LLMs) to generate textual prompts dynamically.
We incorporate a large multimodal model (LMM) to condition on visual content by generating image descriptions.
arXiv Detail & Related papers (2024-10-20T14:10:22Z) - Learning from Contrastive Prompts: Automated Optimization and Adaptation [7.455360923031003]
We propose the Learning from Contrastive Prompts (LCP) framework to enhance prompt optimization and adaptation.
LCP employs contrastive learning to generate effective prompts by analyzing patterns in good and bad prompt examples.
Our evaluation on the Big-Bench Hard dataset shows that LCP has a win rate of over 76% over existing methods in prompt optimization.
arXiv Detail & Related papers (2024-09-23T16:47:23Z) - QPO: Query-dependent Prompt Optimization via Multi-Loop Offline Reinforcement Learning [58.767866109043055]
We introduce Query-dependent Prompt Optimization (QPO), which iteratively fine-tune a small pretrained language model to generate optimal prompts tailored to the input queries.<n>We derive insights from offline prompting demonstration data, which already exists in large quantities as a by-product of benchmarking diverse prompts on open-sourced tasks.<n> Experiments on various LLM scales and diverse NLP and math tasks demonstrate the efficacy and cost-efficiency of our method in both zero-shot and few-shot scenarios.
arXiv Detail & Related papers (2024-08-20T03:06:48Z) - MAPO: Boosting Large Language Model Performance with Model-Adaptive Prompt Optimization [73.7779735046424]
We show that different prompts should be adapted to different Large Language Models (LLM) to enhance their capabilities across various downstream tasks in NLP.
We then propose a model-adaptive prompt (MAPO) method that optimize the original prompts for each specific LLM in downstream tasks.
arXiv Detail & Related papers (2024-07-04T18:39:59Z) - Multi-Reference Preference Optimization for Large Language Models [56.84730239046117]
We introduce a novel closed-form formulation for direct preference optimization using multiple reference models.
The resulting algorithm, Multi-Reference Preference Optimization (MRPO), leverages broader prior knowledge from diverse reference models.
Our experiments demonstrate that LLMs finetuned with MRPO generalize better in various preference data, regardless of data scarcity or abundance.
arXiv Detail & Related papers (2024-05-26T00:29:04Z) - Unleashing the Potential of Large Language Models as Prompt Optimizers: Analogical Analysis with Gradient-based Model Optimizers [108.72225067368592]
We propose a novel perspective to investigate the design of large language models (LLMs)-based prompts.<n>We identify two pivotal factors in model parameter learning: update direction and update method.<n>We develop a capable Gradient-inspired Prompt-based GPO.
arXiv Detail & Related papers (2024-02-27T15:05:32Z) - FIPO: Free-form Instruction-oriented Prompt Optimization with Preference Dataset and Modular Fine-tuning Schema [36.65009632307124]
We propose Free-from Instruction-oriented Prompt Optimization (FIPO) to improve task performance of large language models (LLMs)<n>FIPO uses a modular APO template that dynamically integrate the naive task instruction, optional instruction responses, and optional ground truth to produce finely optimized prompts.<n>We validate FIPO framework across five public benchmarks and six testing models.
arXiv Detail & Related papers (2024-02-19T03:56:44Z) - Relative Preference Optimization: Enhancing LLM Alignment through Contrasting Responses across Identical and Diverse Prompts [95.09994361995389]
Relative Preference Optimization (RPO) is designed to discern between more and less preferred responses derived from both identical and related prompts.
RPO has demonstrated a superior ability to align large language models with user preferences and to improve their adaptability during the training process.
arXiv Detail & Related papers (2024-02-12T22:47:57Z) - Are Large Language Models Good Prompt Optimizers? [65.48910201816223]
We conduct a study to uncover the actual mechanism of LLM-based Prompt Optimization.
Our findings reveal that the LLMs struggle to identify the true causes of errors during reflection, tending to be biased by their own prior knowledge.
We introduce a new "Automatic Behavior Optimization" paradigm, which directly optimize the target model's behavior in a more controllable manner.
arXiv Detail & Related papers (2024-02-03T09:48:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.