論文の概要: CSPENet: Contour-Aware and Saliency Priors Embedding Network for Infrared Small Target Detection
- arxiv url: http://arxiv.org/abs/2505.09943v1
- Date: Thu, 15 May 2025 03:56:36 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-16 22:29:06.17754
- Title: CSPENet: Contour-Aware and Saliency Priors Embedding Network for Infrared Small Target Detection
- Title(参考訳): CSPENet:赤外小ターゲット検出のためのcontour-ware and saliency Priors Network
- Authors: Jiakun Deng, Kexuan Li, Xingye Cui, Jiaxuan Li, Chang Long, Tian Pu, Zhenming Peng,
- Abstract要約: 赤外線小目標検出(ISTD)は、幅広い民間・軍事用途において重要な役割を担っている。
既存の手法では, 密集した乱雑な環境下でのディムターゲットの局所化や輪郭情報の認識に欠陥がある。
本稿では,ISTDのためのcontour-aware and saliency priors embedded network (CSPENet)を提案する。
- 参考スコア(独自算出の注目度): 4.731073701194089
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Infrared small target detection (ISTD) plays a critical role in a wide range of civilian and military applications. Existing methods suffer from deficiencies in the localization of dim targets and the perception of contour information under dense clutter environments, severely limiting their detection performance. To tackle these issues, we propose a contour-aware and saliency priors embedding network (CSPENet) for ISTD. We first design a surround-convergent prior extraction module (SCPEM) that effectively captures the intrinsic characteristic of target contour pixel gradients converging toward their center. This module concurrently extracts two collaborative priors: a boosted saliency prior for accurate target localization and multi-scale structural priors for comprehensively enriching contour detail representation. Building upon this, we propose a dual-branch priors embedding architecture (DBPEA) that establishes differentiated feature fusion pathways, embedding these two priors at optimal network positions to achieve performance enhancement. Finally, we develop an attention-guided feature enhancement module (AGFEM) to refine feature representations and improve saliency estimation accuracy. Experimental results on public datasets NUDT-SIRST, IRSTD-1k, and NUAA-SIRST demonstrate that our CSPENet outperforms other state-of-the-art methods in detection performance. The code is available at https://github.com/IDIP2025/CSPENet.
- Abstract(参考訳): 赤外線小目標検出(ISTD)は、幅広い民間・軍事用途において重要な役割を担っている。
既存の手法では, 密接な乱雑な環境下でのディムターゲットの局所化や輪郭情報の認識に欠陥があり, 検出性能が著しく制限されている。
これらの課題に対処するために, ISTD のためのcontour-aware and saliency priors embedded network (CSPENet) を提案する。
まず,その中心に収束するターゲット輪郭画素勾配の固有特性を効果的に捉えるサラウンド収束事前抽出モジュール(SCPEM)を設計する。
このモジュールは2つの協調的な先行を同時に抽出する: 正確な目標ローカライゼーションに先立つ昇華と、輪郭詳細表現を包括的に強化するための複数スケールの構造的先行である。
そこで本稿では,特徴融合経路を区別したDBPEA(Double-branch Priors Embedding Architecture)を提案する。
最後に,注目誘導機能拡張モジュール(AGFEM)を開発し,特徴表現を洗練し,精度を向上する。
公開データセット NUDT-SIRST, IRSTD-1k, NUAA-SIRST による実験結果から, CSPENet は検出性能において他の最先端手法よりも優れていることが示された。
コードはhttps://github.com/IDIP2025/CSPENetで公開されている。
関連論文リスト
- 10K is Enough: An Ultra-Lightweight Binarized Network for Infrared Small-Target Detection [48.074211420276605]
バイナリ化されたニューラルネットワーク(BNN)は、モデル圧縮における例外的な効率によって区別される。
両立赤外小ターゲット検出ネットワーク(BiisNet)を提案する。
BiisNetは二項化畳み込みのコア操作を保存し、完全精度の機能をネットワークの情報フローに統合する。
論文 参考訳(メタデータ) (2025-03-04T14:25:51Z) - Paying more attention to local contrast: improving infrared small target detection performance via prior knowledge [11.865797842063884]
本稿では,局所コントラスト注意向上型赤外小型目標検出ネットワーク(LCAE-Net)を提案する。
パラメータカウントと浮動小数点演算(FLOP)はそれぞれ1.945Mと4.862Gであり、エッジデバイスへの展開に適している。
論文 参考訳(メタデータ) (2024-11-20T12:21:30Z) - Single-Point Supervised High-Resolution Dynamic Network for Infrared Small Target Detection [7.0456782736205685]
単一点教師付き高分解能ダイナミックネットワーク(SSHD-Net)を提案する。
単一点監視のみを用いて、最先端(SOTA)検出性能を実現する。
公開データセット NUDT-SIRST と IRSTD-1k の実験により,本手法の有効性が示された。
論文 参考訳(メタデータ) (2024-08-04T09:44:47Z) - SIRST-5K: Exploring Massive Negatives Synthesis with Self-supervised
Learning for Robust Infrared Small Target Detection [53.19618419772467]
単一フレーム赤外線小ターゲット検出(SIRST)は、乱雑な背景から小さなターゲットを認識することを目的としている。
Transformerの開発に伴い、SIRSTモデルのスケールは常に増大している。
赤外線小ターゲットデータの多彩な多様性により,本アルゴリズムはモデル性能と収束速度を大幅に改善する。
論文 参考訳(メタデータ) (2024-03-08T16:14:54Z) - Small Object Detection via Coarse-to-fine Proposal Generation and
Imitation Learning [52.06176253457522]
本稿では,粗粒度パイプラインと特徴模倣学習に基づく小型物体検出に適した2段階フレームワークを提案する。
CFINetは、大規模な小さなオブジェクト検出ベンチマークであるSODA-DとSODA-Aで最先端の性能を達成する。
論文 参考訳(メタデータ) (2023-08-18T13:13:09Z) - ABC: Attention with Bilinear Correlation for Infrared Small Target
Detection [4.7379300868029395]
CNNに基づく深層学習法は、赤外線小ターゲット(IRST)のセグメンテーションに有効ではない
バイリニア相関(ABC)を用いた注目モデルを提案する。
ABCはトランスアーキテクチャに基づいており、特徴抽出と融合のための新しいアテンション機構を備えた畳み込み線形核融合トランス (CLFT) モジュールを含んでいる。
論文 参考訳(メタデータ) (2023-03-18T03:47:06Z) - One-Stage Cascade Refinement Networks for Infrared Small Target
Detection [21.28595135499812]
SIRST(Single-frame InfraRed Small Target)検出は、固有の特性の欠如による課題である。
実世界の高解像度単一フレームターゲットのSIRST-V2データセットからなる赤外線小ターゲット検出のための新しい研究ベンチマークを提案する。
論文 参考訳(メタデータ) (2022-12-16T13:37:23Z) - PC-RGNN: Point Cloud Completion and Graph Neural Network for 3D Object
Detection [57.49788100647103]
LiDARベースの3Dオブジェクト検出は、自動運転にとって重要なタスクです。
現在のアプローチでは、遠方および閉ざされた物体の偏りと部分的な点雲に苦しむ。
本稿では,この課題を2つの解決法で解決する新しい二段階アプローチ,pc-rgnnを提案する。
論文 参考訳(メタデータ) (2020-12-18T18:06:43Z) - SPU-Net: Self-Supervised Point Cloud Upsampling by Coarse-to-Fine
Reconstruction with Self-Projection Optimization [52.20602782690776]
実際のスキャンされたスパースデータからトレーニング用の大規模なペアリングスパーススキャンポイントセットを得るのは高価で面倒です。
本研究では,SPU-Net と呼ばれる自己監視型点群アップサンプリングネットワークを提案する。
本研究では,合成データと実データの両方について様々な実験を行い,最先端の教師付き手法と同等の性能が得られることを示す。
論文 参考訳(メタデータ) (2020-12-08T14:14:09Z) - Anchor-free Small-scale Multispectral Pedestrian Detection [88.7497134369344]
適応型単一段アンカーフリーベースアーキテクチャにおける2つのモードの効果的かつ効率的な多重スペクトル融合法を提案する。
我々は,直接的境界ボックス予測ではなく,対象の中心と規模に基づく歩行者表現の学習を目指す。
その結果,小型歩行者の検出における本手法の有効性が示唆された。
論文 参考訳(メタデータ) (2020-08-19T13:13:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。