論文の概要: One-Stage Cascade Refinement Networks for Infrared Small Target
Detection
- arxiv url: http://arxiv.org/abs/2212.08472v1
- Date: Fri, 16 Dec 2022 13:37:23 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-19 15:41:04.946830
- Title: One-Stage Cascade Refinement Networks for Infrared Small Target
Detection
- Title(参考訳): 赤外小目標検出のための一段階カスケード微細化ネットワーク
- Authors: Yimian Dai and Xiang Li and Fei Zhou and Yulei Qian and Yaohong Chen
and Jian Yang
- Abstract要約: SIRST(Single-frame InfraRed Small Target)検出は、固有の特性の欠如による課題である。
実世界の高解像度単一フレームターゲットのSIRST-V2データセットからなる赤外線小ターゲット検出のための新しい研究ベンチマークを提案する。
- 参考スコア(独自算出の注目度): 21.28595135499812
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Single-frame InfraRed Small Target (SIRST) detection has been a challenging
task due to a lack of inherent characteristics, imprecise bounding box
regression, a scarcity of real-world datasets, and sensitive localization
evaluation. In this paper, we propose a comprehensive solution to these
challenges. First, we find that the existing anchor-free label assignment
method is prone to mislabeling small targets as background, leading to their
omission by detectors. To overcome this issue, we propose an all-scale
pseudo-box-based label assignment scheme that relaxes the constraints on scale
and decouples the spatial assignment from the size of the ground-truth target.
Second, motivated by the structured prior of feature pyramids, we introduce the
one-stage cascade refinement network (OSCAR), which uses the high-level head as
soft proposals for the low-level refinement head. This allows OSCAR to process
the same target in a cascade coarse-to-fine manner. Finally, we present a new
research benchmark for infrared small target detection, consisting of the
SIRST-V2 dataset of real-world, high-resolution single-frame targets, the
normalized contrast evaluation metric, and the DeepInfrared toolkit for
detection. We conduct extensive ablation studies to evaluate the components of
OSCAR and compare its performance to state-of-the-art model-driven and
data-driven methods on the SIRST-V2 benchmark. Our results demonstrate that a
top-down cascade refinement framework can improve the accuracy of infrared
small target detection without sacrificing efficiency. The DeepInfrared
toolkit, dataset, and trained models are available at
https://github.com/YimianDai/open-deepinfrared to advance further research in
this field.
- Abstract(参考訳): 単一フレーム赤外線小目標(sirst)検出は、固有の特性の欠如、境界ボックス回帰の不正確さ、実世界のデータセットの不足、感度の高いローカライズ評価により、難しい課題となっている。
本稿では,これらの課題に対する包括的解決策を提案する。
まず、既存のアンカーフリーラベル割り当て手法は、小さなターゲットを背景として誤ラベルする傾向があり、検出器による排除につながる。
この問題を克服するため,本稿では,スケール上の制約を緩和し,接地対象から空間割り当てを分離する,全規模擬似ボックスに基づくラベル割当て方式を提案する。
第2に, 特徴ピラミッドの先行構造を動機として, 低レベル改良ヘッドのソフトプロポーザルとして高レベルヘッドを用いたワンステージカスケード改良ネットワーク(OSCAR)を導入する。
これによりOSCARは同じターゲットをカスケード間粗い方法で処理できる。
最後に,実世界のsirst-v2データセット,高分解能単一フレームターゲット,正規化コントラスト評価指標,深赤外検出用ツールキットからなる,赤外線小型ターゲット検出のための新たな研究ベンチマークを提案する。
SIRST-V2ベンチマークを用いてOSCARのコンポーネントの評価を行い、その性能を最先端のモデル駆動およびデータ駆動手法と比較する。
その結果,トップダウンカスケードリファインメントフレームワークは,効率を犠牲にすることなく,赤外小目標検出の精度を向上させることができることがわかった。
deepinfrared toolkit, dataset, training modelsはhttps://github.com/yimiandai/open-deepinfraredで入手できる。
関連論文リスト
- Refined Infrared Small Target Detection Scheme with Single-Point Supervision [2.661766509317245]
単一点監視を用いた革新的赤外線小目標検出手法を提案する。
提案手法は最先端(SOTA)性能を実現する。
特に、提案手法は「ICPR 2024 Resource-Limited Infrared Small Target Detection Challenge Track 1: Weakly Supervised Infrared Small Target Detection」で3位を獲得した。
論文 参考訳(メタデータ) (2024-08-05T18:49:58Z) - Single-Point Supervised High-Resolution Dynamic Network for Infrared Small Target Detection [7.0456782736205685]
単一点教師付き高分解能ダイナミックネットワーク(SSHD-Net)を提案する。
単一点監視のみを用いて、最先端(SOTA)検出性能を実現する。
公開データセット NUDT-SIRST と IRSTD-1k の実験により,本手法の有効性が示された。
論文 参考訳(メタデータ) (2024-08-04T09:44:47Z) - Infrared Small Target Detection based on Adjustable Sensitivity Strategy and Multi-Scale Fusion [2.661766509317245]
調整可能な感度(AS)戦略とマルチスケール融合に基づく改良された赤外線小ターゲット検出手法を提案する。
具体的には、マルチスケール方向対応ネットワーク(MSDA-Net)に基づくマルチスケールモデル融合フレームワークを構築する。
このスキームは、PRCV 2024ワイドエリア赤外線小目標検出競技で優勝した。
論文 参考訳(メタデータ) (2024-07-29T15:22:02Z) - Better Sampling, towards Better End-to-end Small Object Detection [7.7473020808686694]
限られた特性と高密度と相互重なり合いのため、小さな物体検出は不満足なままである。
エンド・ツー・エンド・フレームワークにおけるサンプリングの強化手法を提案する。
我々のモデルは、VisDroneデータセット上での最先端(SOTA)よりも平均精度(AP)が2.9%向上することを示す。
論文 参考訳(メタデータ) (2024-05-17T04:37:44Z) - SIRST-5K: Exploring Massive Negatives Synthesis with Self-supervised
Learning for Robust Infrared Small Target Detection [53.19618419772467]
単一フレーム赤外線小ターゲット検出(SIRST)は、乱雑な背景から小さなターゲットを認識することを目的としている。
Transformerの開発に伴い、SIRSTモデルのスケールは常に増大している。
赤外線小ターゲットデータの多彩な多様性により,本アルゴリズムはモデル性能と収束速度を大幅に改善する。
論文 参考訳(メタデータ) (2024-03-08T16:14:54Z) - SpirDet: Towards Efficient, Accurate and Lightweight Infrared Small
Target Detector [60.42293239557962]
我々は、赤外線小ターゲットの効率的な検出のための新しいアプローチであるSpirDetを提案する。
新しいデュアルブランチスパースデコーダを用いて特徴写像を復元する。
大規模な実験により、提案されたSpirDetは最先端モデルよりも大幅に優れていることが示された。
論文 参考訳(メタデータ) (2024-02-08T05:06:14Z) - Enhancing Infrared Small Target Detection Robustness with Bi-Level
Adversarial Framework [61.34862133870934]
本稿では,異なる汚職の存在下での検出の堅牢性を促進するために,二段階の対向的枠組みを提案する。
我々の手法は広範囲の汚職で21.96%のIOUを著しく改善し、特に一般ベンチマークで4.97%のIOUを推進している。
論文 参考訳(メタデータ) (2023-09-03T06:35:07Z) - Small Object Detection via Coarse-to-fine Proposal Generation and
Imitation Learning [52.06176253457522]
本稿では,粗粒度パイプラインと特徴模倣学習に基づく小型物体検出に適した2段階フレームワークを提案する。
CFINetは、大規模な小さなオブジェクト検出ベンチマークであるSODA-DとSODA-Aで最先端の性能を達成する。
論文 参考訳(メタデータ) (2023-08-18T13:13:09Z) - EFLNet: Enhancing Feature Learning for Infrared Small Target Detection [20.546186772828555]
単一フレームの赤外線小目標検出は難しい課題であると考えられている。
ターゲットと背景の極端に不均衡のため、境界ボックスの回帰は赤外線小ターゲットに対して非常に敏感である。
本稿では,これらの問題に対処する機能学習ネットワーク(EFLNet)を提案する。
論文 参考訳(メタデータ) (2023-07-27T09:23:22Z) - Anchor-free Oriented Proposal Generator for Object Detection [59.54125119453818]
オブジェクト指向物体検出はリモートセンシング画像解釈において実用的で困難な課題である。
今日では、指向性検出器は主に水平方向の箱を中間体として使用し、それらから指向性のある箱を導出している。
本稿では,ネットワークアーキテクチャから水平ボックス関連操作を放棄する,AOPG(Anchor-free Oriented Proposal Generator)を提案する。
論文 参考訳(メタデータ) (2021-10-05T10:45:51Z) - Infrared Small-Dim Target Detection with Transformer under Complex
Backgrounds [155.388487263872]
変換器を用いた赤外線小径目標検出手法を提案する。
画像特徴の相互作用情報をより広い範囲で学習するために,変換器の自己認識機構を採用する。
最小限のターゲットの機能を学習するための機能拡張モジュールも設計しています。
論文 参考訳(メタデータ) (2021-09-29T12:23:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。