論文の概要: LAV: Audio-Driven Dynamic Visual Generation with Neural Compression and StyleGAN2
- arxiv url: http://arxiv.org/abs/2505.10101v1
- Date: Thu, 15 May 2025 09:04:12 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-16 22:29:06.254101
- Title: LAV: Audio-Driven Dynamic Visual Generation with Neural Compression and StyleGAN2
- Title(参考訳): LAV: ニューラル圧縮とスタイルGAN2によるオーディオ駆動動的ビジュアル生成
- Authors: Jongmin Jung, Dasaem Jeong,
- Abstract要約: LAV(Latent Audio-Visual)は、EnCodecのニューラルオーディオ圧縮とStyleGAN2の生成機能を統合するシステムである。
このフレームワークは、芸術的・計算的な用途に事前訓練されたオーディオ圧縮モデルを使用することの可能性を示す。
- 参考スコア(独自算出の注目度): 0.9208007322096533
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper introduces LAV (Latent Audio-Visual), a system that integrates EnCodec's neural audio compression with StyleGAN2's generative capabilities to produce visually dynamic outputs driven by pre-recorded audio. Unlike previous works that rely on explicit feature mappings, LAV uses EnCodec embeddings as latent representations, directly transformed into StyleGAN2's style latent space via randomly initialized linear mapping. This approach preserves semantic richness in the transformation, enabling nuanced and semantically coherent audio-visual translations. The framework demonstrates the potential of using pretrained audio compression models for artistic and computational applications.
- Abstract(参考訳): 本稿では,EnCodecのニューラルオーディオ圧縮とStyleGAN2の生成機能を統合するシステムであるLAV(Latent Audio-Visual)を紹介する。
明示的な特徴マッピングに依存する以前の作品とは異なり、LAVはEnCodec埋め込みを潜在表現として使用し、ランダムに初期化された線形マッピングを通じて直接StyleGAN2スタイルの潜在空間に変換する。
このアプローチは変換における意味的豊かさを保ち、ニュアンスとセマンティック・コヒーレントな音声視覚翻訳を可能にする。
このフレームワークは、芸術的・計算的な用途に事前訓練されたオーディオ圧縮モデルを使用することの可能性を示す。
関連論文リスト
- TA-V2A: Textually Assisted Video-to-Audio Generation [9.957113952852051]
V2A(Video-to-audio)生成は、マルチメディア編集、拡張現実、自動コンテンツ作成において有望な領域として登場した。
本稿では,言語,音声,ビデオ機能を統合し,潜在空間における意味表現を改善するTA-V2Aを提案する。
論文 参考訳(メタデータ) (2025-03-12T06:43:24Z) - CCStereo: Audio-Visual Contextual and Contrastive Learning for Binaural Audio Generation [21.58489462776634]
バイノーラルオーディオ生成(BAG)は、視覚的プロンプトを用いてモノラルオーディオをステレオオーディオに変換することを目的としている。
現在のモデルは、部屋の環境に過度に適合し、きめ細かい空間的詳細を失うリスクがある。
本稿では,音声-視覚条件正規化層を取り入れた新しい音声-視覚生成モデルを提案する。
論文 参考訳(メタデータ) (2025-01-06T06:04:21Z) - C3LLM: Conditional Multimodal Content Generation Using Large Language Models [66.11184017840688]
C3LLMは,ビデオ・トゥ・オーディオ,音声・テキスト,テキスト・トゥ・オーディオの3つのタスクを組み合わせた新しいフレームワークである。
C3LLMはLarge Language Model (LLM) 構造を異なるモダリティを整列するためのブリッジとして適合させる。
本手法は,従来の音声理解,ビデオ音声生成,テキスト音声生成のタスクを1つの統一モデルに統合する。
論文 参考訳(メタデータ) (2024-05-25T09:10:12Z) - Seeing and Hearing: Open-domain Visual-Audio Generation with Diffusion
Latent Aligners [69.70590867769408]
ビデオとオーディオのコンテンツ制作は、映画産業とプロのユーザーにとって重要な技術である。
既存の拡散に基づく手法は、ビデオと音声を別々に生成する。
本研究では,このギャップを埋めることを目的として,クロス・ビジュアル・オーディオとジョイント・ヴィジュアル・オーディオ生成のためのフレームワークを慎重に設計した。
論文 参考訳(メタデータ) (2024-02-27T17:57:04Z) - Can CLIP Help Sound Source Localization? [19.370071553914954]
音声信号をCLIPのテキストエンコーダと互換性のあるトークンに変換するフレームワークを提案する。
これらの埋め込みを直接利用することにより,提案手法は提供音声のための音声グラウンドマスクを生成する。
この結果から,事前学習した画像テキストモデルを用いることで,より完全でコンパクトな音像定位写像を生成できる可能性が示唆された。
論文 参考訳(メタデータ) (2023-11-07T15:26:57Z) - Align, Adapt and Inject: Sound-guided Unified Image Generation [50.34667929051005]
本稿では,音声誘導画像生成,編集,スタイリングのための統合フレームワーク「アライン,アダプティブ,インジェクション(AAI)」を提案する。
本手法は,既存のテキスト・ツー・イメージ(T2I)モデルを用いて,入力音を通常の単語のように音声トークンに適応させる。
提案するAAIは、他のテキストや音声誘導方式よりも優れています。
論文 参考訳(メタデータ) (2023-06-20T12:50:49Z) - CLIPSonic: Text-to-Audio Synthesis with Unlabeled Videos and Pretrained
Language-Vision Models [50.42886595228255]
本稿では,橋梁としての視覚的モダリティを活用して,所望のテキスト・オーディオ対応を学習することを提案する。
我々は、事前訓練されたコントラスト言語画像事前学習モデルによって符号化されたビデオフレームを考慮し、条件付き拡散モデルを用いてビデオの音声トラックを生成する。
論文 参考訳(メタデータ) (2023-06-16T05:42:01Z) - DiffAVA: Personalized Text-to-Audio Generation with Visual Alignment [30.38594416942543]
本稿では,遅延拡散モデル,すなわちDiffAVAに基づく視覚アライメントを用いた,新規でパーソナライズされたテキスト・音声生成手法を提案する。
我々のDiffAVAは、ビデオ特徴から時間情報を集約するマルチヘッドアテンショントランスフォーマーと、テキスト埋め込みで時間的視覚表現を融合するデュアルマルチモーダル残差ネットワークを活用している。
AudioCapsデータセットの実験結果から、提案したDiffAVAは、視覚的に整列したテキスト・オーディオ生成において、競合する性能を達成できることが示されている。
論文 参考訳(メタデータ) (2023-05-22T10:37:27Z) - Learning Representations from Audio-Visual Spatial Alignment [76.29670751012198]
音声・視覚コンテンツから表現を学習するための新しい自己教師型プレテキストタスクを提案する。
提案したプリテキストタスクの利点は、様々なオーディオおよびビジュアルダウンストリームタスクで実証される。
論文 参考訳(メタデータ) (2020-11-03T16:20:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。