Large Wireless Localization Model (LWLM): A Foundation Model for Positioning in 6G Networks
- URL: http://arxiv.org/abs/2505.10134v1
- Date: Thu, 15 May 2025 10:04:44 GMT
- Title: Large Wireless Localization Model (LWLM): A Foundation Model for Positioning in 6G Networks
- Authors: Guangjin Pan, Kaixuan Huang, Hui Chen, Shunqing Zhang, Christian Häger, Henk Wymeersch,
- Abstract summary: We propose a foundation-model-based solution tailored for wireless localization.<n>We first analyze how different self-supervised learning (SSL) tasks acquire general-purpose and task-specific semantic features.<n>We design a pretraining methodology for the proposed Large Wireless localization Model (LWLM)
- Score: 26.30108656575931
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurate and robust localization is a critical enabler for emerging 5G and 6G applications, including autonomous driving, extended reality (XR), and smart manufacturing. While data-driven approaches have shown promise, most existing models require large amounts of labeled data and struggle to generalize across deployment scenarios and wireless configurations. To address these limitations, we propose a foundation-model-based solution tailored for wireless localization. We first analyze how different self-supervised learning (SSL) tasks acquire general-purpose and task-specific semantic features based on information bottleneck (IB) theory. Building on this foundation, we design a pretraining methodology for the proposed Large Wireless Localization Model (LWLM). Specifically, we propose an SSL framework that jointly optimizes three complementary objectives: (i) spatial-frequency masked channel modeling (SF-MCM), (ii) domain-transformation invariance (DTI), and (iii) position-invariant contrastive learning (PICL). These objectives jointly capture the underlying semantics of wireless channel from multiple perspectives. We further design lightweight decoders for key downstream tasks, including time-of-arrival (ToA) estimation, angle-of-arrival (AoA) estimation, single base station (BS) localization, and multiple BS localization. Comprehensive experimental results confirm that LWLM consistently surpasses both model-based and supervised learning baselines across all localization tasks. In particular, LWLM achieves 26.0%--87.5% improvement over transformer models without pretraining, and exhibits strong generalization under label-limited fine-tuning and unseen BS configurations, confirming its potential as a foundation model for wireless localization.
Related papers
- A Wireless Foundation Model for Multi-Task Prediction [50.21098141769079]
We propose a unified foundation model for multi-task prediction in wireless networks that supports diverse prediction intervals.<n>After trained on large-scale datasets, the proposed foundation model demonstrates strong generalization to unseen scenarios and zero-shot performance on new tasks.
arXiv Detail & Related papers (2025-07-08T12:37:55Z) - Leveraging Importance Sampling to Detach Alignment Modules from Large Language Models [50.19188692497892]
Traditional alignment methods often require retraining large pretrained models.<n>We propose a novel textitResidual Alignment Model (textitRAM) that formalizes the alignment process as a type of importance sampling.<n>We develop a resampling algorithm with iterative token-level decoding to address the common first-token latency issue in comparable methods.
arXiv Detail & Related papers (2025-05-26T08:53:02Z) - Large Language Model-Driven Distributed Integrated Multimodal Sensing and Semantic Communications [5.646293779615063]
We propose a novel large language model (LLM)-driven distributed integrated multimodal sensing and semantic communication framework.<n>Specifically, our system consists of multiple collaborative sensing devices equipped with RF and camera modules.<n> evaluations on a synthetic multi-view RF-visual dataset generated by the Genesis simulation engine show that LLM-DiSAC achieves a good performance.
arXiv Detail & Related papers (2025-05-20T08:00:00Z) - Personalized Wireless Federated Learning for Large Language Models [75.22457544349668]
Large language models (LLMs) have driven profound transformations in wireless networks.<n>Within wireless environments, the training of LLMs faces significant challenges related to security and privacy.<n>This paper presents a systematic analysis of the training stages of LLMs in wireless networks, including pre-training, instruction tuning, and alignment tuning.
arXiv Detail & Related papers (2024-04-20T02:30:21Z) - Multi-Task Learning as enabler for General-Purpose AI-native RAN [1.4295558450631414]
This study explores the effectiveness of multi-task learning (MTL) approaches in facilitating a general-purpose AI native Radio Access Network (RAN)
The investigation focuses on four RAN tasks: (i) secondary carrier prediction, (ii) user location prediction, (iii) indoor link classification, and (iv) line-of-sight link classification.
We validate the performance using realistic simulations considering multi-faceted design aspects of MTL including model architecture, loss and gradient balancing strategies, distributed learning topology, data sparsity and task groupings.
arXiv Detail & Related papers (2024-04-05T21:12:25Z) - The Unreasonable Effectiveness of Large Language-Vision Models for
Source-free Video Domain Adaptation [56.61543110071199]
Source-Free Video Unsupervised Domain Adaptation (SFVUDA) task consists in adapting an action recognition model, trained on a labelled source dataset, to an unlabelled target dataset.
Previous approaches have attempted to address SFVUDA by leveraging self-supervision derived from the target data itself.
We take an approach by exploiting "web-supervision" from Large Language-Vision Models (LLVMs), driven by the rationale that LLVMs contain a rich world prior surprisingly robust to domain-shift.
arXiv Detail & Related papers (2023-08-17T18:12:05Z) - Towards Efficient Task-Driven Model Reprogramming with Foundation Models [52.411508216448716]
Vision foundation models exhibit impressive power, benefiting from the extremely large model capacity and broad training data.
However, in practice, downstream scenarios may only support a small model due to the limited computational resources or efficiency considerations.
This brings a critical challenge for the real-world application of foundation models: one has to transfer the knowledge of a foundation model to the downstream task.
arXiv Detail & Related papers (2023-04-05T07:28:33Z) - Multi-task Learning Approach for Modulation and Wireless Signal
Classification for 5G and Beyond: Edge Deployment via Model Compression [1.218340575383456]
Future communication networks must address the scarce spectrum to accommodate growth of heterogeneous wireless devices.
We exploit the potential of deep neural networks based multi-task learning framework to simultaneously learn modulation and signal classification tasks.
We provide a comprehensive heterogeneous wireless signals dataset for public use.
arXiv Detail & Related papers (2022-02-26T14:51:02Z) - Parallel Successive Learning for Dynamic Distributed Model Training over
Heterogeneous Wireless Networks [50.68446003616802]
Federated learning (FedL) has emerged as a popular technique for distributing model training over a set of wireless devices.
We develop parallel successive learning (PSL), which expands the FedL architecture along three dimensions.
Our analysis sheds light on the notion of cold vs. warmed up models, and model inertia in distributed machine learning.
arXiv Detail & Related papers (2022-02-07T05:11:01Z) - ePointDA: An End-to-End Simulation-to-Real Domain Adaptation Framework
for LiDAR Point Cloud Segmentation [111.56730703473411]
Training deep neural networks (DNNs) on LiDAR data requires large-scale point-wise annotations.
Simulation-to-real domain adaptation (SRDA) trains a DNN using unlimited synthetic data with automatically generated labels.
ePointDA consists of three modules: self-supervised dropout noise rendering, statistics-invariant and spatially-adaptive feature alignment, and transferable segmentation learning.
arXiv Detail & Related papers (2020-09-07T23:46:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.