Knowledge capture, adaptation and composition (KCAC): A framework for cross-task curriculum learning in robotic manipulation
- URL: http://arxiv.org/abs/2505.10522v1
- Date: Thu, 15 May 2025 17:30:29 GMT
- Title: Knowledge capture, adaptation and composition (KCAC): A framework for cross-task curriculum learning in robotic manipulation
- Authors: Xinrui Wang, Yan Jin,
- Abstract summary: Reinforcement learning (RL) has demonstrated remarkable potential in robotic manipulation but faces challenges in sample inefficiency and lack of interpretability.<n>This paper proposes a Knowledge Capture, Adaptation, and Composition framework to integrate knowledge transfer into RL through cross-task curriculum learning.<n>As a result, our KCAC approach achieves a 40 percent reduction in training time while improving task success rates by 10 percent compared to traditional RL methods.
- Score: 6.683222869973898
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Reinforcement learning (RL) has demonstrated remarkable potential in robotic manipulation but faces challenges in sample inefficiency and lack of interpretability, limiting its applicability in real world scenarios. Enabling the agent to gain a deeper understanding and adapt more efficiently to diverse working scenarios is crucial, and strategic knowledge utilization is a key factor in this process. This paper proposes a Knowledge Capture, Adaptation, and Composition (KCAC) framework to systematically integrate knowledge transfer into RL through cross-task curriculum learning. KCAC is evaluated using a two block stacking task in the CausalWorld benchmark, a complex robotic manipulation environment. To our knowledge, existing RL approaches fail to solve this task effectively, reflecting deficiencies in knowledge capture. In this work, we redesign the benchmark reward function by removing rigid constraints and strict ordering, allowing the agent to maximize total rewards concurrently and enabling flexible task completion. Furthermore, we define two self-designed sub-tasks and implement a structured cross-task curriculum to facilitate efficient learning. As a result, our KCAC approach achieves a 40 percent reduction in training time while improving task success rates by 10 percent compared to traditional RL methods. Through extensive evaluation, we identify key curriculum design parameters subtask selection, transition timing, and learning rate that optimize learning efficiency and provide conceptual guidance for curriculum based RL frameworks. This work offers valuable insights into curriculum design in RL and robotic learning.
Related papers
- Omni-Thinker: Scaling Cross-Domain Generalization in LLMs via Multi-Task RL with Hybrid Rewards [50.21528417884747]
We introduce Omni-Thinker, a unified reinforcement learning framework that enhances large language models (LLMs) performance across diverse tasks.<n>Our approach enables consistent optimization across task types and scales RL-based training to subjective domains.<n> Experimental results across four domains reveal that curriculum learning improves performance by 5.2% over joint training and 9.1% over model merging.
arXiv Detail & Related papers (2025-07-20T01:50:16Z) - Causal-Paced Deep Reinforcement Learning [4.728991543521559]
Causal-Paced Deep Reinforcement Learning (CP-DRL) is a curriculum learning framework aware of SCM differences between tasks based on interaction data approximation.<n> Empirically, CP-DRL outperforms existing curriculum methods on the Point Mass benchmark.
arXiv Detail & Related papers (2025-06-24T20:15:01Z) - Re-TASK: Revisiting LLM Tasks from Capability, Skill, and Knowledge Perspectives [54.14429346914995]
Chain-of-Thought (CoT) has become a pivotal method for solving complex problems.
Large language models (LLMs) often struggle to accurately decompose domain-specific tasks.
This paper introduces the Re-TASK framework, a novel theoretical model that revisits LLM tasks from the perspectives of capability, skill, and knowledge.
arXiv Detail & Related papers (2024-08-13T13:58:23Z) - Proximal Curriculum with Task Correlations for Deep Reinforcement Learning [25.10619062353793]
We consider curriculum design in contextual multi-task settings where the agent's final performance is measured w.r.t. a target distribution over complex tasks.
We propose a novel curriculum, ProCuRL-Target, that effectively balances the need for selecting tasks that are not too difficult for the agent while progressing the agent's learning toward the target distribution via leveraging task correlations.
arXiv Detail & Related papers (2024-05-03T21:07:54Z) - Sample Efficient Myopic Exploration Through Multitask Reinforcement
Learning with Diverse Tasks [53.44714413181162]
This paper shows that when an agent is trained on a sufficiently diverse set of tasks, a generic policy-sharing algorithm with myopic exploration design can be sample-efficient.
To the best of our knowledge, this is the first theoretical demonstration of the "exploration benefits" of MTRL.
arXiv Detail & Related papers (2024-03-03T22:57:44Z) - Sample Efficient Reinforcement Learning by Automatically Learning to
Compose Subtasks [3.1594865504808944]
We propose an RL algorithm that automatically structure the reward function for sample efficiency, given a set of labels that signify subtasks.
We evaluate our algorithm in a variety of sparse-reward environments.
arXiv Detail & Related papers (2024-01-25T15:06:40Z) - Variational Curriculum Reinforcement Learning for Unsupervised Discovery
of Skills [25.326624139426514]
We propose a novel approach to unsupervised skill discovery based on information theory, called Value Uncertainty Vari Curriculum Curriculum (VUVC)
We prove that, under regularity conditions, VUVC accelerates the increase of entropy in the visited states compared to the uniform curriculum.
We also demonstrate that the skills discovered by our method successfully complete a real-world robot navigation task in a zero-shot setup.
arXiv Detail & Related papers (2023-10-30T10:34:25Z) - DL-DRL: A double-level deep reinforcement learning approach for
large-scale task scheduling of multi-UAV [65.07776277630228]
We propose a double-level deep reinforcement learning (DL-DRL) approach based on a divide and conquer framework (DCF)
Particularly, we design an encoder-decoder structured policy network in our upper-level DRL model to allocate the tasks to different UAVs.
We also exploit another attention based policy network in our lower-level DRL model to construct the route for each UAV, with the objective to maximize the number of executed tasks.
arXiv Detail & Related papers (2022-08-04T04:35:53Z) - Meta Reinforcement Learning with Successor Feature Based Context [51.35452583759734]
We propose a novel meta-RL approach that achieves competitive performance comparing to existing meta-RL algorithms.
Our method does not only learn high-quality policies for multiple tasks simultaneously but also can quickly adapt to new tasks with a small amount of training.
arXiv Detail & Related papers (2022-07-29T14:52:47Z) - Variational Empowerment as Representation Learning for Goal-Based
Reinforcement Learning [114.07623388322048]
We discuss how the standard goal-conditioned RL (GCRL) is encapsulated by the objective variational empowerment.
Our work lays a novel foundation from which to evaluate, analyze, and develop representation learning techniques in goal-based RL.
arXiv Detail & Related papers (2021-06-02T18:12:26Z) - Improved Context-Based Offline Meta-RL with Attention and Contrastive
Learning [1.3106063755117399]
We improve upon one of the SOTA OMRL algorithms, FOCAL, by incorporating intra-task attention mechanism and inter-task contrastive learning objectives.
Theoretical analysis and experiments are presented to demonstrate the superior performance, efficiency and robustness of our end-to-end and model free method.
arXiv Detail & Related papers (2021-02-22T05:05:16Z) - Self-Paced Deep Reinforcement Learning [42.467323141301826]
Curriculum reinforcement learning (CRL) improves the learning speed and stability of an agent by exposing it to a tailored series of tasks throughout learning.
Despite empirical successes, an open question in CRL is how to automatically generate a curriculum for a given reinforcement learning (RL) agent, avoiding manual design.
We propose an answer by interpreting the curriculum generation as an inference problem, where distributions over tasks are progressively learned to approach the target task.
This approach leads to an automatic curriculum generation, whose pace is controlled by the agent, with solid theoretical motivation and easily integrated with deep RL algorithms.
arXiv Detail & Related papers (2020-04-24T15:48:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.