LibIQ: Toward Real-Time Spectrum Classification in O-RAN dApps
- URL: http://arxiv.org/abs/2505.10537v2
- Date: Tue, 27 May 2025 22:00:27 GMT
- Title: LibIQ: Toward Real-Time Spectrum Classification in O-RAN dApps
- Authors: Filippo Olimpieri, Noemi Giustini, Andrea Lacava, Salvatore D'Oro, Tommaso Melodia, Francesca Cuomo,
- Abstract summary: O-RANs are transforming cellular networks by adopting RAN softwarization and disaggregation concepts.<n>Such management is enabled by RICs, which facilitate near-real-time and non-real-time network control through xApps and rApps.<n>We leverage the dApps concept to enable real-time RF spectrum classification with LibIQ, a novel library for RF signals.
- Score: 15.696586190289947
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The O-RAN architecture is transforming cellular networks by adopting RAN softwarization and disaggregation concepts to enable data-driven monitoring and control of the network. Such management is enabled by RICs, which facilitate near-real-time and non-real-time network control through xApps and rApps. However, they face limitations, including latency overhead in data exchange between the RAN and RIC, restricting real-time monitoring, and the inability to access user plain data due to privacy and security constraints, hindering use cases like beamforming and spectrum classification. In this paper, we leverage the dApps concept to enable real-time RF spectrum classification with LibIQ, a novel library for RF signals that facilitates efficient spectrum monitoring and signal classification by providing functionalities to read I/Q samples as time-series, create datasets and visualize time-series data through plots and spectrograms. Thanks to LibIQ, I/Q samples can be efficiently processed to detect external RF signals, which are subsequently classified using a CNN inside the library. To achieve accurate spectrum analysis, we created an extensive dataset of time-series-based I/Q samples, representing distinct signal types captured using a custom dApp running on a 5G deployment over the Colosseum network emulator and an OTA testbed. We evaluate our model by deploying LibIQ in heterogeneous scenarios with varying center frequencies, time windows, and external RF signals. In real-time analysis, the model classifies the processed I/Q samples, achieving an average accuracy of approximately 97.8% in identifying signal types across all scenarios. We pledge to release both LibIQ and the dataset created as a publicly available framework upon acceptance.
Related papers
- Enhanced Real-Time Threat Detection in 5G Networks: A Self-Attention RNN Autoencoder Approach for Spectral Intrusion Analysis [8.805162150763847]
This paper presents an enhanced experimental model that integrates a self-attention mechanism with a Recurrent Neural Network (RNN)-based autoencoder.
Our approach is grounded in time-series analysis, processes in-phase and quadrature (I/Q) samples to identify irregularities that could indicate potential jamming attacks.
The model's architecture, augmented with a self-attention layer, extends the capabilities of RNN autoencoders.
arXiv Detail & Related papers (2024-11-05T07:01:15Z) - What If We Had Used a Different App? Reliable Counterfactual KPI Analysis in Wireless Systems [52.499838151272016]
This paper addresses the problem of estimating the values of traffic that would have been obtained if a different app had been implemented by the RAN.<n>We propose a conformal-prediction-based counterfactual analysis method for wireless systems.
arXiv Detail & Related papers (2024-09-30T18:47:26Z) - PeFAD: A Parameter-Efficient Federated Framework for Time Series Anomaly Detection [51.20479454379662]
We propose a.
Federated Anomaly Detection framework named PeFAD with the increasing privacy concerns.
We conduct extensive evaluations on four real datasets, where PeFAD outperforms existing state-of-the-art baselines by up to 28.74%.
arXiv Detail & Related papers (2024-06-04T13:51:08Z) - Cross-domain Learning Framework for Tracking Users in RIS-aided Multi-band ISAC Systems with Sparse Labeled Data [55.70071704247794]
Integrated sensing and communications (ISAC) is pivotal for 6G communications and is boosted by the rapid development of reconfigurable intelligent surfaces (RISs)
This paper proposes the X2Track framework, where we model the tracking function by a hierarchical architecture, jointly utilizing multi-modal CSI indicators across multiple bands, and optimize it in a cross-domain manner.
Under X2Track, we design an efficient deep learning algorithm to minimize tracking errors, based on transformer neural networks and adversarial learning techniques.
arXiv Detail & Related papers (2024-05-10T08:04:27Z) - TSLANet: Rethinking Transformers for Time Series Representation Learning [19.795353886621715]
Time series data is characterized by its intrinsic long and short-range dependencies.
We introduce a novel Time Series Lightweight Network (TSLANet) as a universal convolutional model for diverse time series tasks.
Our experiments demonstrate that TSLANet outperforms state-of-the-art models in various tasks spanning classification, forecasting, and anomaly detection.
arXiv Detail & Related papers (2024-04-12T13:41:29Z) - Deep-Learned Compression for Radio-Frequency Signal Classification [0.49109372384514843]
Next-generation cellular concepts rely on the processing of large quantities of radio-frequency (RF) samples.
We propose a deep learned compression model, HQARF, to compress the complex-valued samples of RF signals.
We are assessing the effects of HQARF on the performance of an AI model trained to infer the modulation class of the RF signal.
arXiv Detail & Related papers (2024-03-05T17:42:39Z) - Fully-Connected Spatial-Temporal Graph for Multivariate Time-Series Data [50.84488941336865]
We propose a novel method called Fully- Spatial-Temporal Graph Neural Network (FC-STGNN)
For graph construction, we design a decay graph to connect sensors across all timestamps based on their temporal distances.
For graph convolution, we devise FC graph convolution with a moving-pooling GNN layer to effectively capture the ST dependencies for learning effective representations.
arXiv Detail & Related papers (2023-09-11T08:44:07Z) - HiNoVa: A Novel Open-Set Detection Method for Automating RF Device
Authentication [9.571774189070531]
We introduce a novel open-set detection approach based on the patterns of the hidden state values within a Convolutional Neural Network (CNN) Long Short-Term Memory (LSTM) model.
Our approach greatly improves the Area Under the Precision-Recall Curve on LoRa, Wireless-WiFi, and Wired-WiFi datasets.
arXiv Detail & Related papers (2023-05-16T16:47:02Z) - Time-to-Green predictions for fully-actuated signal control systems with
supervised learning [56.66331540599836]
This paper proposes a time series prediction framework using aggregated traffic signal and loop detector data.
We utilize state-of-the-art machine learning models to predict future signal phases' duration.
Results based on an empirical data set from a fully-actuated signal control system in Zurich, Switzerland, show that machine learning models outperform conventional prediction methods.
arXiv Detail & Related papers (2022-08-24T07:50:43Z) - Comprehensive RF Dataset Collection and Release: A Deep Learning-Based
Device Fingerprinting Use Case [10.698553177585973]
We present and release a large-scale RF fingerprinting dataset, collected from 25 different LoRa-enabled IoT transmitting devices using USRP B210 receivers.
Our dataset consists of a large number of SigMF-compliant binary files representing the I/Q time-domain samples and their corresponding FFT-based files of LoRa transmissions.
arXiv Detail & Related papers (2022-01-06T19:07:57Z) - Learning summary features of time series for likelihood free inference [93.08098361687722]
We present a data-driven strategy for automatically learning summary features from time series data.
Our results indicate that learning summary features from data can compete and even outperform LFI methods based on hand-crafted values.
arXiv Detail & Related papers (2020-12-04T19:21:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.