論文の概要: Flowing Through Hilbert Space: Quantum-Enhanced Generative Models for Lattice Field Theory
- arxiv url: http://arxiv.org/abs/2505.10553v1
- Date: Thu, 15 May 2025 17:58:16 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-16 22:29:06.456151
- Title: Flowing Through Hilbert Space: Quantum-Enhanced Generative Models for Lattice Field Theory
- Title(参考訳): ヒルベルト空間を流れる:格子場理論のための量子強化生成モデル
- Authors: Jehu Martinez, Andrea Delgado,
- Abstract要約: このような状態下での量子強調サンプリングを探索するために,ハイブリッド量子古典正規化フローモデルを開発した。
提案手法では,パラメータ化量子回路を古典正規化フローアーキテクチャに組み込み,振幅エンコーディングと量子絡み合いを利用して生成過程における表現性を高める。
- 参考スコア(独自算出の注目度): 0.9208007322096533
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Sampling from high-dimensional and structured probability distributions is a fundamental challenge in computational physics, particularly in the context of lattice field theory (LFT), where generating field configurations efficiently is critical, yet computationally intensive. In this work, we apply a previously developed hybrid quantum-classical normalizing flow model to explore quantum-enhanced sampling in such regimes. Our approach embeds parameterized quantum circuits within a classical normalizing flow architecture, leveraging amplitude encoding and quantum entanglement to enhance expressivity in the generative process. The quantum circuit serves as a trainable transformation within the flow, while classical networks provide adaptive coupling and compensate for quantum hardware imperfections. This design enables efficient density estimation and sample generation, potentially reducing the resources required compared to purely classical methods. While LFT provides a representative and physically meaningful application for benchmarking, our focus is on improving the sampling efficiency of generative models through quantum components. This work contributes toward the development of quantum-enhanced generative modeling frameworks that address the sampling bottlenecks encountered in physics and beyond.
- Abstract(参考訳): 高次元および構造化された確率分布からサンプリングすることは、特に格子場理論(LFT)の文脈において、計算物理学における基本的な課題である。
本研究では、以前に開発されたハイブリッド量子古典正規化フローモデルを用いて、そのような状態における量子強調サンプリングを探索する。
提案手法では,パラメータ化量子回路を古典正規化フローアーキテクチャに組み込み,振幅エンコーディングと量子絡み合いを利用して生成過程における表現性を高める。
量子回路はフロー内のトレーニング可能な変換として機能し、古典的なネットワークは適応的な結合と量子ハードウェアの不完全な補償を提供する。
この設計により、効率的な密度推定とサンプル生成が可能となり、純粋に古典的な手法と比較して必要な資源を削減できる可能性がある。
LFTは、ベンチマークのための代表的かつ物理的に有意義なアプリケーションを提供するが、我々の焦点は、量子成分による生成モデルのサンプリング効率の改善である。
この研究は、物理学以降で遭遇するサンプリングボトルネックに対処する量子強化生成モデリングフレームワークの開発に寄与する。
関連論文リスト
- Quantum Walks-Based Adaptive Distribution Generation with Efficient CUDA-Q Acceleration [0.5679775668038153]
本稿では,量子ウォークに基づく手法を用いて,目標確率分布の高精度かつ効率性を実現する適応分布生成器を提案する。
本手法は,量子ウォークと離散時間量子ウォーク,特にスプリットステップの量子ウォークとそのエンタングル拡張を統合し,コインパラメータを動的にチューニングし,量子状態の進化を所望の分布へと導く。
論文 参考訳(メタデータ) (2025-04-18T07:53:03Z) - Quantum Latent Diffusion Models [65.16624577812436]
本稿では,古典的潜伏拡散モデルの確立した考え方を活用する量子拡散モデルの潜在的バージョンを提案する。
これには、従来のオートエンコーダを使用してイメージを削減し、次に潜時空間の変動回路で操作する。
この結果は、量子バージョンが生成した画像のより良い測定値を得ることによって証明されたように、量子バージョンを使用することの利点を示している。
論文 参考訳(メタデータ) (2025-01-19T21:24:02Z) - Hybrid Quantum-Classical Normalizing Flow [5.85475369017678]
パラメータ化量子回路に基づくハイブリッド量子古典正規化フロー(HQCNF)モデルを提案する。
我々は画像生成問題でモデルを検証した。
量子生成逆数ネットワーク(QGAN)のような他の量子生成モデルと比較して、我々のモデルはFr'echet 距離(FID)の低いスコアを得る。
論文 参考訳(メタデータ) (2024-05-22T16:37:22Z) - Towards Efficient Quantum Hybrid Diffusion Models [68.43405413443175]
本稿では,量子ハイブリッド拡散モデルの設計手法を提案する。
量子コンピューティングの優れた一般化と古典的ネットワークのモジュラリティを組み合わせた2つのハイブリダイゼーション手法を提案する。
論文 参考訳(メタデータ) (2024-02-25T16:57:51Z) - Quantum circuit synthesis with diffusion models [0.6554326244334868]
我々は、この変換を促進するために、生成機械学習モデル、特に拡散モデル(DM)をデノナイズする。
我々は、ゲートベースの量子回路内で所望の量子演算を生成するために、このモデルを操縦する。
我々は、DMを量子回路合成の重要な要素として想定し、実用的な応用だけでなく、理論的量子計算に関する洞察も強化する。
論文 参考訳(メタデータ) (2023-11-03T17:17:08Z) - A Framework for Demonstrating Practical Quantum Advantage: Racing
Quantum against Classical Generative Models [62.997667081978825]
生成モデルの一般化性能を評価するためのフレームワークを構築した。
古典的および量子生成モデル間の実用的量子優位性(PQA)に対する最初の比較レースを確立する。
以上の結果から,QCBMは,他の最先端の古典的生成モデルよりも,データ制限方式の方が効率的であることが示唆された。
論文 参考訳(メタデータ) (2023-03-27T22:48:28Z) - Synergy Between Quantum Circuits and Tensor Networks: Short-cutting the
Race to Practical Quantum Advantage [43.3054117987806]
本稿では,量子回路の初期化を最適化するために,古典計算資源を利用するスケーラブルな手法を提案する。
本手法は, PQCのトレーニング性, 性能を, 様々な問題において著しく向上させることを示す。
古典的コンピュータを用いて限られた量子資源を増強する手法を実証することにより、量子コンピューティングにおける量子と量子に着想を得たモデル間の相乗効果を実証する。
論文 参考訳(メタデータ) (2022-08-29T15:24:03Z) - Generalization Metrics for Practical Quantum Advantage in Generative
Models [68.8204255655161]
生成モデリングは量子コンピュータにとって広く受け入れられている自然のユースケースである。
我々は,アルゴリズムの一般化性能を計測して,生成モデリングのための実用的な量子優位性を探索する,単純で曖昧な手法を構築した。
シミュレーションの結果、我々の量子にインスパイアされたモデルは、目に見えない、有効なサンプルを生成するのに、最大で68倍の費用がかかります。
論文 参考訳(メタデータ) (2022-01-21T16:35:35Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
量子力学シミュレーションのための量子アルゴリズムは、伝統的に時間進化作用素のトロッター近似の実装に基づいている。
変分量子アルゴリズムは欠かせない代替手段となり、現在のハードウェア上での小規模なシミュレーションを可能にしている。
量子ゲートコストが明らかに削減されているにもかかわらず、現在の実装における変分法は量子的優位性をもたらすことはありそうにない。
論文 参考訳(メタデータ) (2021-08-09T18:00:05Z) - Autoregressive Transformer Neural Network for Simulating Open Quantum Systems via a Probabilistic Formulation [5.668795025564699]
オープン量子システムのダイナミクスに対処するためのアプローチを提案する。
自己回帰変換ニューラルネットワークを用いて量子状態をコンパクトに表現する。
効率的なアルゴリズムは、リウヴィリア超作用素の力学をシミュレートするために開発された。
論文 参考訳(メタデータ) (2020-09-11T18:00:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。