GRNN:Recurrent Neural Network based on Ghost Features for Video Super-Resolution
- URL: http://arxiv.org/abs/2505.10577v1
- Date: Wed, 14 May 2025 00:38:46 GMT
- Title: GRNN:Recurrent Neural Network based on Ghost Features for Video Super-Resolution
- Authors: Yutong Guo,
- Abstract summary: We experimentally observe that many features in VSR models are also similar to each other, so we propose to use "Ghost features" to reduce this redundancy.<n>We also analyze the so-called "gradient disappearance" phenomenon generated by the conventional recurrent convolutional network (RNN) model.
- Score: 0.087024326813104
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Modern video super-resolution (VSR) systems based on convolutional neural networks (CNNs) require huge computational costs. The problem of feature redundancy is present in most models in many domains, but is rarely discussed in VSR. We experimentally observe that many features in VSR models are also similar to each other, so we propose to use "Ghost features" to reduce this redundancy. We also analyze the so-called "gradient disappearance" phenomenon generated by the conventional recurrent convolutional network (RNN) model, and combine the Ghost module with RNN to complete the modeling on time series. The current frame is used as input to the model together with the next frame, the output of the previous frame and the hidden state. Extensive experiments on several benchmark models and datasets show that the PSNR and SSIM of our proposed modality are improved to some extent. Some texture details in the video are also better preserved.
Related papers
- GhostRNN: Reducing State Redundancy in RNN with Cheap Operations [66.14054138609355]
We propose an efficient RNN architecture, GhostRNN, which reduces hidden state redundancy with cheap operations.
Experiments on KWS and SE tasks demonstrate that the proposed GhostRNN significantly reduces the memory usage (40%) and computation cost while keeping performance similar.
arXiv Detail & Related papers (2024-11-20T11:37:14Z) - Recurrent Neural Networks for Still Images [0.0]
We argue that RNNs can effectively handle still images by interpreting the pixels as a sequence.
We introduce a novel RNN design tailored for two-dimensional inputs, such as images, and a custom version of BiDirectional RNN (BiRNN) that is more memory-efficient than traditional implementations.
arXiv Detail & Related papers (2024-09-10T06:07:20Z) - Adaptive Convolutional Neural Network for Image Super-resolution [43.06377001247278]
We propose a adaptive convolutional neural network for image super-resolution (ADSRNet)
The upper network can enhance relation of context information, salient information relation of a kernel mapping and relations of shallow and deep layers.
The lower network utilizes a symmetric architecture to enhance relations of different layers to mine more structural information.
arXiv Detail & Related papers (2024-02-24T03:44:06Z) - MS-RNN: A Flexible Multi-Scale Framework for Spatiotemporal Predictive
Learning [7.311071760653835]
We propose a general framework named Multi-Scale RNN (MS-RNN) to boost recent RNN models for predictive learning.
We verify the MS-RNN framework by thorough theoretical analyses and exhaustive experiments.
Results show the efficiency that RNN models incorporating our framework have much lower memory cost but better performance than before.
arXiv Detail & Related papers (2022-06-07T04:57:58Z) - Group-based Bi-Directional Recurrent Wavelet Neural Networks for Video
Super-Resolution [4.9136996406481135]
Video super-resolution (VSR) aims to estimate a high-resolution (HR) frame from a low-resolution (LR) frames.
Key challenge for VSR lies in the effective exploitation of spatial correlation in an intra-frame and temporal dependency between consecutive frames.
arXiv Detail & Related papers (2021-06-14T06:36:13Z) - Learning Frequency-aware Dynamic Network for Efficient Super-Resolution [56.98668484450857]
This paper explores a novel frequency-aware dynamic network for dividing the input into multiple parts according to its coefficients in the discrete cosine transform (DCT) domain.
In practice, the high-frequency part will be processed using expensive operations and the lower-frequency part is assigned with cheap operations to relieve the computation burden.
Experiments conducted on benchmark SISR models and datasets show that the frequency-aware dynamic network can be employed for various SISR neural architectures.
arXiv Detail & Related papers (2021-03-15T12:54:26Z) - GhostSR: Learning Ghost Features for Efficient Image Super-Resolution [49.393251361038025]
Single image super-resolution (SISR) system based on convolutional neural networks (CNNs) achieves fancy performance while requires huge computational costs.
We propose to use shift operation to generate the redundant features (i.e., Ghost features) of SISR models.
We show that both the non-compact and lightweight SISR models embedded in our proposed module can achieve comparable performance to that of their baselines.
arXiv Detail & Related papers (2021-01-21T10:09:47Z) - A Fully Tensorized Recurrent Neural Network [48.50376453324581]
We introduce a "fully tensorized" RNN architecture which jointly encodes the separate weight matrices within each recurrent cell.
This approach reduces model size by several orders of magnitude, while still maintaining similar or better performance compared to standard RNNs.
arXiv Detail & Related papers (2020-10-08T18:24:12Z) - Recurrent Graph Tensor Networks: A Low-Complexity Framework for
Modelling High-Dimensional Multi-Way Sequence [24.594587557319837]
We develop a graph filter framework for approximating the modelling of hidden states in Recurrent Neural Networks (RNNs)
The proposed framework is validated through several multi-way sequence modelling tasks and benchmarked against traditional RNNs.
We show that the proposed RGTN is capable of not only out-performing standard RNNs, but also mitigating the Curse of Dimensionality associated with traditional RNNs.
arXiv Detail & Related papers (2020-09-18T10:13:36Z) - Accurate and Lightweight Image Super-Resolution with Model-Guided Deep
Unfolding Network [63.69237156340457]
We present and advocate an explainable approach toward SISR named model-guided deep unfolding network (MoG-DUN)
MoG-DUN is accurate (producing fewer aliasing artifacts), computationally efficient (with reduced model parameters), and versatile (capable of handling multiple degradations)
The superiority of the proposed MoG-DUN method to existing state-of-theart image methods including RCAN, SRDNF, and SRFBN is substantiated by extensive experiments on several popular datasets and various degradation scenarios.
arXiv Detail & Related papers (2020-09-14T08:23:37Z) - iSeeBetter: Spatio-temporal video super-resolution using recurrent
generative back-projection networks [0.0]
We present iSeeBetter, a novel GAN-based structural-temporal approach to video super-resolution (VSR)
iSeeBetter extracts spatial and temporal information from the current and neighboring frames using the concept of recurrent back-projection networks as its generator.
Our results demonstrate that iSeeBetter offers superior VSR fidelity and surpasses state-of-the-art performance.
arXiv Detail & Related papers (2020-06-13T01:36:30Z) - Iterative Network for Image Super-Resolution [69.07361550998318]
Single image super-resolution (SISR) has been greatly revitalized by the recent development of convolutional neural networks (CNN)
This paper provides a new insight on conventional SISR algorithm, and proposes a substantially different approach relying on the iterative optimization.
A novel iterative super-resolution network (ISRN) is proposed on top of the iterative optimization.
arXiv Detail & Related papers (2020-05-20T11:11:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.