Accelerating Parameter Initialization in Quantum Chemical Simulations via LSTM-FC-VQE
- URL: http://arxiv.org/abs/2505.10842v1
- Date: Fri, 16 May 2025 04:19:00 GMT
- Title: Accelerating Parameter Initialization in Quantum Chemical Simulations via LSTM-FC-VQE
- Authors: Ran-Yu Chang, Yu-Cheng Lin, Pei-Che Hsu, Tsung-Wei Huang, En-Jui Kuo,
- Abstract summary: We use Long Short-Term Memory neural networks to speed up quantum chemical simulations.<n>By training the LSTM on optimized parameters from small molecules, the model learns to predict high-quality initializations for larger systems.
- Score: 5.396660696277483
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a meta-learning framework that leverages Long Short-Term Memory (LSTM) neural networks to accelerate parameter initialization in quantum chemical simulations using the Variational Quantum Eigensolver (VQE). By training the LSTM on optimized parameters from small molecules, the model learns to predict high-quality initializations for larger systems, reducing the number of required VQE iterations. Our enhanced LSTM-FC-VQE architecture introduces a fully connected layer, improving adaptability across molecules with varying parameter sizes. Experimental results show that our approach achieves faster convergence and lower energy errors than traditional initialization, demonstrating its practical potential for efficient quantum simulations in the NISQ era.
Related papers
- TensoMeta-VQC: A Tensor-Train-Guided Meta-Learning Framework for Robust and Scalable Variational Quantum Computing [60.996803677584424]
TensoMeta-VQC is a novel tensor-train (TT)-guided meta-learning framework designed to improve the robustness and scalability of VQC significantly.<n>Our framework fully delegates the generation of quantum circuit parameters to a classical TT network, effectively decoupling optimization from quantum hardware.
arXiv Detail & Related papers (2025-08-01T23:37:55Z) - Learning to Learn with Quantum Optimization via Quantum Neural Networks [1.7819574476785418]
We introduce a quantum meta-learning framework that combines quantum neural networks, specifically Quantum Long Short-Term Memory (QLSTM)<n>Our approach rapidly generalizes to larger, more complex problems, substantially reducing the number of iterations required for convergence.
arXiv Detail & Related papers (2025-05-01T14:39:26Z) - Toward Practical Quantum Machine Learning: A Novel Hybrid Quantum LSTM for Fraud Detection [0.1398098625978622]
We present a novel hybrid quantum-classical neural network architecture for fraud detection.<n>By leveraging quantum phenomena such as superposition and entanglement, our model enhances the feature representation of sequential transaction data.<n>Results demonstrate competitive improvements in accuracy, precision, recall, and F1 score relative to a conventional LSTM baseline.
arXiv Detail & Related papers (2025-04-30T19:09:12Z) - Federated Quantum-Train Long Short-Term Memory for Gravitational Wave Signal [3.360429911727189]
We present Federated QT-LSTM, a novel framework that combines the Quantum-Train (QT) methodology with Long Short-Term Memory (LSTM) networks in a federated learning setup.<n>By leveraging quantum neural networks (QNNs) to generate classical LSTM model parameters during training, the framework effectively addresses challenges in model compression, scalability, and computational efficiency.
arXiv Detail & Related papers (2025-03-20T11:34:13Z) - Q-MAML: Quantum Model-Agnostic Meta-Learning for Variational Quantum Algorithms [4.525216077859531]
We introduce a new framework for optimizing parameterized quantum circuits (PQCs) that employs a classical, inspired by Model-Agnostic Meta-Learning (MAML) technique.<n>Our framework features a classical neural network, called Learner, which interacts with a PQC using the output of Learner as an initial parameter.<n>In the adaptation phase, the framework requires only a few PQC updates to converge to a more accurate value, while the learner remains unchanged.
arXiv Detail & Related papers (2025-01-10T12:07:00Z) - Quantum Kernel-Based Long Short-term Memory for Climate Time-Series Forecasting [0.24739484546803336]
We present the Quantum Kernel-Based Long short-memory (QK-LSTM) network, which integrates quantum kernel methods into classical LSTM architectures.<n>QK-LSTM captures intricate nonlinear dependencies and temporal dynamics with fewer trainable parameters.
arXiv Detail & Related papers (2024-12-12T01:16:52Z) - Leveraging Pre-Trained Neural Networks to Enhance Machine Learning with Variational Quantum Circuits [48.33631905972908]
We introduce an innovative approach that utilizes pre-trained neural networks to enhance Variational Quantum Circuits (VQC)
This technique effectively separates approximation error from qubit count and removes the need for restrictive conditions.
Our results extend to applications such as human genome analysis, demonstrating the broad applicability of our approach.
arXiv Detail & Related papers (2024-11-13T12:03:39Z) - Federated Quantum Long Short-term Memory (FedQLSTM) [58.50321380769256]
Quantum federated learning (QFL) can facilitate collaborative learning across multiple clients using quantum machine learning (QML) models.
No prior work has focused on developing a QFL framework that utilizes temporal data to approximate functions.
A novel QFL framework that is the first to integrate quantum long short-term memory (QLSTM) models with temporal data is proposed.
arXiv Detail & Related papers (2023-12-21T21:40:47Z) - Pre-training Tensor-Train Networks Facilitates Machine Learning with Variational Quantum Circuits [70.97518416003358]
Variational quantum circuits (VQCs) hold promise for quantum machine learning on noisy intermediate-scale quantum (NISQ) devices.
While tensor-train networks (TTNs) can enhance VQC representation and generalization, the resulting hybrid model, TTN-VQC, faces optimization challenges due to the Polyak-Lojasiewicz (PL) condition.
To mitigate this challenge, we introduce Pre+TTN-VQC, a pre-trained TTN model combined with a VQC.
arXiv Detail & Related papers (2023-05-18T03:08:18Z) - A self-consistent field approach for the variational quantum
eigensolver: orbital optimization goes adaptive [52.77024349608834]
We present a self consistent field approach (SCF) within the Adaptive Derivative-Assembled Problem-Assembled Ansatz Variational Eigensolver (ADAPTVQE)
This framework is used for efficient quantum simulations of chemical systems on nearterm quantum computers.
arXiv Detail & Related papers (2022-12-21T23:15:17Z) - Symmetric Pruning in Quantum Neural Networks [111.438286016951]
Quantum neural networks (QNNs) exert the power of modern quantum machines.
QNNs with handcraft symmetric ansatzes generally experience better trainability than those with asymmetric ansatzes.
We propose the effective quantum neural tangent kernel (EQNTK) to quantify the convergence of QNNs towards the global optima.
arXiv Detail & Related papers (2022-08-30T08:17:55Z) - Benchmarking adaptive variational quantum eigensolvers [63.277656713454284]
We benchmark the accuracy of VQE and ADAPT-VQE to calculate the electronic ground states and potential energy curves.
We find both methods provide good estimates of the energy and ground state.
gradient-based optimization is more economical and delivers superior performance than analogous simulations carried out with gradient-frees.
arXiv Detail & Related papers (2020-11-02T19:52:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.