Connecting the Dots: A Chain-of-Collaboration Prompting Framework for LLM Agents
- URL: http://arxiv.org/abs/2505.10936v1
- Date: Fri, 16 May 2025 07:14:42 GMT
- Title: Connecting the Dots: A Chain-of-Collaboration Prompting Framework for LLM Agents
- Authors: Jiaxing Zhao, Hongbin Xie, Yuzhen Lei, Xuan Song, Zhuoran Shi, Lianxin Li, Shuangxue Liu, Haoran Zhang,
- Abstract summary: Large Language Models (LLMs) have demonstrated impressive performance in executing complex reasoning tasks.<n>We propose Cochain, a collaboration prompting framework that combines knowledge and prompts at a reduced cost.
- Score: 14.211554116294762
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs) have demonstrated impressive performance in executing complex reasoning tasks. Chain-of-thought effectively enhances reasoning capabilities by unlocking the potential of large models, while multi-agent systems provide more comprehensive solutions by integrating collective intelligence of multiple agents. However, both approaches face significant limitations. Single-agent with chain-of-thought, due to the inherent complexity of designing cross-domain prompts, faces collaboration challenges. Meanwhile, multi-agent systems consume substantial tokens and inevitably dilute the primary problem, which is particularly problematic in business workflow tasks. To address these challenges, we propose Cochain, a collaboration prompting framework that effectively solves business workflow collaboration problem by combining knowledge and prompts at a reduced cost. Specifically, we construct an integrated knowledge graph that incorporates knowledge from multiple stages. Furthermore, by maintaining and retrieving a prompts tree, we can obtain prompt information relevant to other stages of the business workflow. We perform extensive evaluations of Cochain across multiple datasets, demonstrating that Cochain outperforms all baselines in both prompt engineering and multi-agent LLMs. Additionally, expert evaluation results indicate that the use of a small model in combination with Cochain outperforms GPT-4.
Related papers
- United Minds or Isolated Agents? Exploring Coordination of LLMs under Cognitive Load Theory [14.058714578635222]
Large Language Models (LLMs) exhibit a notable performance ceiling on complex, multi-faceted tasks.<n>CoThinker is a novel framework designed to mitigate cognitive overload and enhance collaborative problem-solving abilities.
arXiv Detail & Related papers (2025-06-07T15:48:04Z) - Cross-Task Experiential Learning on LLM-based Multi-Agent Collaboration [63.90193684394165]
We introduce multi-agent cross-task experiential learning (MAEL), a novel framework that endows LLM-driven agents with explicit cross-task learning and experience accumulation.<n>During the experiential learning phase, we quantify the quality for each step in the task-solving workflow and store the resulting rewards.<n>During inference, agents retrieve high-reward, task-relevant experiences as few-shot examples to enhance the effectiveness of each reasoning step.
arXiv Detail & Related papers (2025-05-29T07:24:37Z) - Multi-Agent Collaboration via Evolving Orchestration [61.93162413517026]
Large language models (LLMs) have achieved remarkable results across diverse downstream tasks, but their monolithic nature restricts scalability and efficiency in complex problem-solving.<n>We propose a puppeteer-style paradigm for LLM-based multi-agent collaboration, where a central orchestrator dynamically directs agents in response to evolving task states.<n> Experiments on closed- and open-domain scenarios show that this method achieves superior performance with reduced computational costs.
arXiv Detail & Related papers (2025-05-26T07:02:17Z) - A Trustworthy Multi-LLM Network: Challenges,Solutions, and A Use Case [59.58213261128626]
We propose a blockchain-enabled collaborative framework that connects multiple Large Language Models (LLMs) into a Trustworthy Multi-LLM Network (MultiLLMN)<n>This architecture enables the cooperative evaluation and selection of the most reliable and high-quality responses to complex network optimization problems.
arXiv Detail & Related papers (2025-05-06T05:32:46Z) - Layered Chain-of-Thought Prompting for Multi-Agent LLM Systems: A Comprehensive Approach to Explainable Large Language Models [0.0]
We propose Layered Chain-of-Thought (Layered-CoT) Prompting, a novel framework that systematically segments the reasoning process into multiple layers.<n>We present three scenarios -- medical triage, financial risk assessment, and agile engineering -- and demonstrate how Layered-CoT surpasses vanilla CoT in terms of transparency, correctness, and user engagement.
arXiv Detail & Related papers (2025-01-29T13:21:09Z) - Textualized Agent-Style Reasoning for Complex Tasks by Multiple Round LLM Generation [49.27250832754313]
We present AgentCOT, a llm-based autonomous agent framework.
At each step, AgentCOT selects an action and executes it to yield an intermediate result with supporting evidence.
We introduce two new strategies to enhance the performance of AgentCOT.
arXiv Detail & Related papers (2024-09-19T02:20:06Z) - Adaptive In-conversation Team Building for Language Model Agents [33.03550687362213]
Leveraging multiple large language model (LLM) agents has shown to be a promising approach for tackling complex tasks.<n>Our new adaptive team-building paradigm offers a flexible solution, realized through a novel agent design named Captain Agent.<n>A comprehensive evaluation across six real-world scenarios demonstrates that Captain Agent significantly outperforms existing multi-agent methods.
arXiv Detail & Related papers (2024-05-29T18:08:37Z) - mABC: multi-Agent Blockchain-Inspired Collaboration for root cause analysis in micro-services architecture [31.944353229461157]
We propose a pioneering framework, multi-Agent-inspired Collaboration for root cause analysis in micro-services architecture (mABC)<n>mABC offers a comprehensive automated root cause analysis and resolution in micro-services architecture and significantly improves the IT Operation domain.
arXiv Detail & Related papers (2024-04-18T12:35:39Z) - Corex: Pushing the Boundaries of Complex Reasoning through Multi-Model Collaboration [83.4031923134958]
Corex is a suite of novel general-purpose strategies that transform Large Language Models into autonomous agents.
Inspired by human behaviors, Corex is constituted by diverse collaboration paradigms including Debate, Review, and Retrieve modes.
We demonstrate that orchestrating multiple LLMs to work in concert yields substantially better performance compared to existing methods.
arXiv Detail & Related papers (2023-09-30T07:11:39Z) - Cooperation, Competition, and Maliciousness: LLM-Stakeholders Interactive Negotiation [52.930183136111864]
We propose using scorable negotiation to evaluate Large Language Models (LLMs)
To reach an agreement, agents must have strong arithmetic, inference, exploration, and planning capabilities.
We provide procedures to create new games and increase games' difficulty to have an evolving benchmark.
arXiv Detail & Related papers (2023-09-29T13:33:06Z) - Unleashing the Emergent Cognitive Synergy in Large Language Models: A Task-Solving Agent through Multi-Persona Self-Collaboration [116.09561564489799]
Solo Performance Prompting transforms a single LLM into a cognitive synergist by engaging in multi-turn self-collaboration with multiple personas.
A cognitive synergist is an intelligent agent that collaboratively combines multiple minds' strengths and knowledge to enhance problem-solving in complex tasks.
Our in-depth analysis shows that assigning multiple fine-grained personas in LLMs improves problem-solving abilities compared to using a single or fixed number of personas.
arXiv Detail & Related papers (2023-07-11T14:45:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.