論文の概要: RAGSynth: Synthetic Data for Robust and Faithful RAG Component Optimization
- arxiv url: http://arxiv.org/abs/2505.10989v1
- Date: Fri, 16 May 2025 08:38:25 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-19 14:36:14.365515
- Title: RAGSynth: Synthetic Data for Robust and Faithful RAG Component Optimization
- Title(参考訳): RAGSynth:ロバストかつ忠実なRAGコンポーネント最適化のための合成データ
- Authors: Haiyang Shen, Hang Yan, Zhongshi Xing, Mugeng Liu, Yue Li, Zhiyang Chen, Yuxiang Wang, Jiuzheng Wang, Yun Ma,
- Abstract要約: RAGは知識集約タスクにおけるLLMの性能を向上させることができる。
既存のレトリバーは、公開知識に大きく依存し、様々な論理的複雑さと手がかり完全性のクエリに苦労する。
データ構築モデリングとそれに対応する合成データ生成実装を含むフレームワークであるRAG Synthを紹介する。
- 参考スコア(独自算出の注目度): 17.646474558498088
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: RAG can enhance the performance of LLMs on knowledge-intensive tasks. Various RAG paradigms, including vanilla, planning-based, and iterative RAG, are built upon 2 cores: the retriever, which should robustly select relevant documents across complex queries, and the generator, which should faithfully synthesize responses. However, existing retrievers rely heavily on public knowledge and struggle with queries of varying logical complexity and clue completeness, while generators frequently face fidelity problems. In this work, we introduce RAGSynth, a framework that includes a data construction modeling and a corresponding synthetic data generation implementation, designed to optimize retriever robustness and generator fidelity. Additionally, we present SynthBench, a benchmark encompassing 8 domain-specific documents across 4 domains, featuring diverse query complexities, clue completeness, and fine-grained citation granularity. Leveraging RAGSynth, we generate a large-scale synthetic dataset, including single and multi-hop. Extensive experiments demonstrate that the synthetic data significantly improves the robustness of the retrievers and the fidelity of the generators. Additional evaluations confirm that RAGSynth can also generalize well across different domains. By integrating the optimized retrievers into various RAG paradigms, we consistently observe enhanced RAG system performance. We have open-sourced the implementation on https://github.com/EachSheep/RAGSynth.
- Abstract(参考訳): RAGは知識集約タスクにおけるLLMの性能を向上させることができる。
バニラ、計画ベース、反復RAGを含む様々なRAGパラダイムは、2つのコア上に構築されている。
しかし、既存のレトリバーは、様々な論理的複雑さと手がかり完全性のクエリに大きく依存しており、ジェネレータはしばしば忠実性の問題に直面している。
本研究では,データ構築モデルとそれに対応する合成データ生成実装を含むフレームワークであるRAGSynthについて紹介する。
さらに,4つのドメインにまたがる8つのドメイン固有文書を含むベンチマークであるSynthBenchについて述べる。
RAGSynthを活用することで、シングルホップやマルチホップを含む大規模な合成データセットを生成する。
総合的な実験により、合成データは、回収機の堅牢性と発電機の忠実性を大幅に改善することが示された。
さらなる評価により、RAGSynthは異なる領域にわたってうまく一般化可能であることが確認される。
最適化されたレトリバーを様々なRAGパラダイムに統合することにより、改良されたRAGシステム性能を継続的に観察する。
我々はhttps://github.com/EachSheep/RAGSynth.comで実装をオープンソース化しました。
関連論文リスト
- Improving Retrieval-Augmented Generation through Multi-Agent Reinforcement Learning [51.54046200512198]
Retrieval-augmented Generation (RAG) は、外部の現在の知識を大規模言語モデルに組み込むために広く利用されている。
標準的なRAGパイプラインは、クエリ書き換え、文書検索、文書フィルタリング、回答生成など、いくつかのコンポーネントから構成される。
これらの課題を克服するため,RAGパイプラインを多エージェント協調作業として,各コンポーネントをRLエージェントとして扱うことを提案する。
論文 参考訳(メタデータ) (2025-01-25T14:24:50Z) - RAG Foundry: A Framework for Enhancing LLMs for Retrieval Augmented Generation [8.377398103067508]
我々は、RAGのユースケースのための大規模言語モデルを拡張するためのオープンソースのフレームワークであるRAG Foundryを紹介します。
RAG Foundryはデータ生成、トレーニング、推論、評価を単一のワークフローに統合する。
多様なRAG構成を持つLlama-3およびPhi-3モデルを拡張し,微調整することで,フレームワークの有効性を示す。
論文 参考訳(メタデータ) (2024-08-05T15:16:24Z) - Multi-Head RAG: Solving Multi-Aspect Problems with LLMs [13.638439488923671]
検索拡張生成(RAG)は大規模言語モデル(LLM)の能力を向上させる
既存のRAGソリューションは、実質的に異なる内容の複数のドキュメントを取得する必要がある可能性のあるクエリに焦点を当てていない。
本稿では,このギャップをシンプルかつ強力なアイデアで解決する新しい手法として,MRAG(Multi-Head RAG)を提案する。
論文 参考訳(メタデータ) (2024-06-07T16:59:38Z) - FlashRAG: A Modular Toolkit for Efficient Retrieval-Augmented Generation Research [70.6584488911715]
検索増強世代(RAG)は、かなりの研究関心を集めている。
既存のRAGツールキットは、しばしば重くて柔軟であり、研究者のカスタマイズのニーズを満たすことができない。
我々のツールキットは16の高度なRAGメソッドを実装し、38のベンチマークデータセットを収集し、整理した。
論文 参考訳(メタデータ) (2024-05-22T12:12:40Z) - SynthesizRR: Generating Diverse Datasets with Retrieval Augmentation [55.2480439325792]
トピック分類,感情分析,トーン検出,ユーモアの6つのデータセットの合成について検討した。
その結果,SynthesizRRは語彙や意味の多様性,人文との類似性,蒸留性能を大幅に向上させることがわかった。
論文 参考訳(メタデータ) (2024-05-16T12:22:41Z) - Blended RAG: Improving RAG (Retriever-Augmented Generation) Accuracy with Semantic Search and Hybrid Query-Based Retrievers [0.0]
Retrieval-Augmented Generation (RAG) は、大規模言語モデル (LLM) で文書のプライベートな知識基盤を注入し、生成的Q&A (Question-Answering) システムを構築するための一般的なアプローチである。
本稿では,Vector インデックスや Sparse インデックスなどのセマンティック検索手法をハイブリッドクエリ手法と組み合わせた 'Blended RAG' 手法を提案する。
本研究は,NQ や TREC-COVID などの IR (Information Retrieval) データセットの検索結果の改善と,新たなベンチマーク設定を行う。
論文 参考訳(メタデータ) (2024-03-22T17:13:46Z) - RAGGED: Towards Informed Design of Retrieval Augmented Generation Systems [51.171355532527365]
Retrieval-augmented Generation (RAG) は言語モデル(LM)の性能を大幅に向上させる
RAGGEDは、様々な文書ベースの質問応答タスクにわたるRAG構成を分析するためのフレームワークである。
論文 参考訳(メタデータ) (2024-03-14T02:26:31Z) - CRUD-RAG: A Comprehensive Chinese Benchmark for Retrieval-Augmented Generation of Large Language Models [49.16989035566899]
Retrieval-Augmented Generation (RAG)は、大規模言語モデル(LLM)の能力を高める技術である。
本稿では,大規模かつ包括的なベンチマークを構築し,様々なRAGアプリケーションシナリオにおけるRAGシステムのすべてのコンポーネントを評価する。
論文 参考訳(メタデータ) (2024-01-30T14:25:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。