GraphOracle: A Foundation Model for Knowledge Graph Reasoning
- URL: http://arxiv.org/abs/2505.11125v1
- Date: Fri, 16 May 2025 11:14:57 GMT
- Title: GraphOracle: A Foundation Model for Knowledge Graph Reasoning
- Authors: Enjun Du, Siyi Liu, Yongqi Zhang,
- Abstract summary: We introduce textbftextscGraphOracle, a relation-centric foundation model that unifies reasoning across knowledge graphs.<n>A query-dependent attention mechanism is developed to learn inductive representations for both relations and entities.<n>Pre-training on diverse knowledge graphs, followed by minutes-level fine-tuning, enables effective generalization to unseen entities, relations, and entire graphs.
- Score: 9.894106590443714
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Foundation models have demonstrated remarkable capabilities across various domains, but developing analogous models for knowledge graphs presents unique challenges due to their dynamic nature and the need for cross-domain reasoning. To address these issues, we introduce \textbf{\textsc{GraphOracle}}, a relation-centric foundation model that unifies reasoning across knowledge graphs by converting them into Relation-Dependency Graphs (RDG), explicitly encoding compositional patterns with fewer edges than prior methods. A query-dependent attention mechanism is further developed to learn inductive representations for both relations and entities. Pre-training on diverse knowledge graphs, followed by minutes-level fine-tuning, enables effective generalization to unseen entities, relations, and entire graphs. Through comprehensive experiments on 31 diverse benchmarks spanning transductive, inductive, and cross-domain settings, we demonstrate consistent state-of-the-art performance with minimal adaptation, improving the prediction performance by up to 35\% compared to the strongest baselines.
Related papers
- Relational Deep Learning: Challenges, Foundations and Next-Generation Architectures [50.46688111973999]
Graph machine learning has led to a significant increase in the capabilities of models that learn on arbitrary graph-structured data.<n>We present a new blueprint that enables end-to-end representation of'relational entity graphs' without traditional engineering feature.<n>We discuss key challenges including large-scale multi-table integration and the complexities of modeling temporal dynamics and heterogeneous data.
arXiv Detail & Related papers (2025-06-19T23:51:38Z) - Learning Efficient and Generalizable Graph Retriever for Knowledge-Graph Question Answering [75.12322966980003]
Large Language Models (LLMs) have shown strong inductive reasoning ability across various domains.<n>Most existing RAG pipelines rely on unstructured text, limiting interpretability and structured reasoning.<n>Recent studies have explored integrating knowledge graphs with LLMs for knowledge graph question answering.<n>We propose RAPL, a novel framework for efficient and effective graph retrieval in KGQA.
arXiv Detail & Related papers (2025-06-11T12:03:52Z) - Revisiting Graph Neural Networks on Graph-level Tasks: Comprehensive Experiments, Analysis, and Improvements [54.006506479865344]
We propose a unified evaluation framework for graph-level Graph Neural Networks (GNNs)<n>This framework provides a standardized setting to evaluate GNNs across diverse datasets.<n>We also propose a novel GNN model with enhanced expressivity and generalization capabilities.
arXiv Detail & Related papers (2025-01-01T08:48:53Z) - Towards Graph Foundation Models: Training on Knowledge Graphs Enables Transferability to General Graphs [26.477872205199667]
We introduce SCR, a unified graph reasoning framework designed to train on knowledge graphs.<n>We propose semantic-conditioned message passing, a novel mechanism addressing the inherent semantic isolation in traditional KG reasoning.<n>Our results show substantial performance gains over existing foundation models.
arXiv Detail & Related papers (2024-10-16T14:26:08Z) - Towards Graph Prompt Learning: A Survey and Beyond [38.55555996765227]
Large-scale "pre-train and prompt learning" paradigms have demonstrated remarkable adaptability.
This survey categorizes over 100 relevant works in this field, summarizing general design principles and the latest applications.
arXiv Detail & Related papers (2024-08-26T06:36:42Z) - Introducing Diminutive Causal Structure into Graph Representation Learning [19.132025125620274]
We introduce a novel method that enables Graph Neural Networks (GNNs) to glean insights from specialized diminutive causal structures.
Our method specifically extracts causal knowledge from the model representation of these diminutive causal structures.
arXiv Detail & Related papers (2024-06-13T00:18:20Z) - Higher Order Structures For Graph Explanations [9.164945693135959]
We present Framework For Higher-Order Representations In Graph Explanations (FORGE)<n>FORGE enables graph explainers to capture higher-order, multi-node interactions.<n>It improves average explanation accuracy by 1.9x and 2.25x, respectively.
arXiv Detail & Related papers (2024-06-05T13:31:30Z) - EGRC-Net: Embedding-induced Graph Refinement Clustering Network [66.44293190793294]
We propose a novel graph clustering network called Embedding-Induced Graph Refinement Clustering Network (EGRC-Net)
EGRC-Net effectively utilizes the learned embedding to adaptively refine the initial graph and enhance the clustering performance.
Our proposed methods consistently outperform several state-of-the-art approaches.
arXiv Detail & Related papers (2022-11-19T09:08:43Z) - A Robust and Generalized Framework for Adversarial Graph Embedding [73.37228022428663]
We propose a robust framework for adversarial graph embedding, named AGE.
AGE generates the fake neighbor nodes as the enhanced negative samples from the implicit distribution.
Based on this framework, we propose three models to handle three types of graph data.
arXiv Detail & Related papers (2021-05-22T07:05:48Z) - Model-Agnostic Graph Regularization for Few-Shot Learning [60.64531995451357]
We present a comprehensive study on graph embedded few-shot learning.
We introduce a graph regularization approach that allows a deeper understanding of the impact of incorporating graph information between labels.
Our approach improves the performance of strong base learners by up to 2% on Mini-ImageNet and 6.7% on ImageNet-FS.
arXiv Detail & Related papers (2021-02-14T05:28:13Z) - Interpretable Deep Graph Generation with Node-Edge Co-Disentanglement [55.2456981313287]
We propose a new disentanglement enhancement framework for deep generative models for attributed graphs.
A novel variational objective is proposed to disentangle the above three types of latent factors, with novel architecture for node and edge deconvolutions.
Within each type, individual-factor-wise disentanglement is further enhanced, which is shown to be a generalization of the existing framework for images.
arXiv Detail & Related papers (2020-06-09T16:33:49Z) - Out-of-Sample Representation Learning for Multi-Relational Graphs [8.956321788625894]
We study the out-of-sample representation learning problem for non-attributed knowledge graphs.
We create benchmark datasets for this task, develop several models and baselines, and provide empirical analyses and comparisons of the proposed models and baselines.
arXiv Detail & Related papers (2020-04-28T00:53:01Z) - Tensor Graph Convolutional Networks for Multi-relational and Robust
Learning [74.05478502080658]
This paper introduces a tensor-graph convolutional network (TGCN) for scalable semi-supervised learning (SSL) from data associated with a collection of graphs, that are represented by a tensor.
The proposed architecture achieves markedly improved performance relative to standard GCNs, copes with state-of-the-art adversarial attacks, and leads to remarkable SSL performance over protein-to-protein interaction networks.
arXiv Detail & Related papers (2020-03-15T02:33:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.